Normalized defining polynomial
\( x^{24} - 11 x^{22} + 76 x^{20} - 327 x^{18} + 1031 x^{16} - 2261 x^{14} + 3677 x^{12} - 4001 x^{10} + 3091 x^{8} - 1302 x^{6} + 371 x^{4} - 21 x^{2} + 1 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(169450166032303737749261229339181056=2^{24}\cdot 3^{12}\cdot 13^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(156=2^{2}\cdot 3\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{156}(1,·)$, $\chi_{156}(131,·)$, $\chi_{156}(133,·)$, $\chi_{156}(113,·)$, $\chi_{156}(139,·)$, $\chi_{156}(77,·)$, $\chi_{156}(79,·)$, $\chi_{156}(17,·)$, $\chi_{156}(107,·)$, $\chi_{156}(23,·)$, $\chi_{156}(25,·)$, $\chi_{156}(155,·)$, $\chi_{156}(29,·)$, $\chi_{156}(95,·)$, $\chi_{156}(35,·)$, $\chi_{156}(101,·)$, $\chi_{156}(103,·)$, $\chi_{156}(43,·)$, $\chi_{156}(49,·)$, $\chi_{156}(53,·)$, $\chi_{156}(55,·)$, $\chi_{156}(121,·)$, $\chi_{156}(61,·)$, $\chi_{156}(127,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{5} a^{18} - \frac{1}{5} a^{12} + \frac{1}{5} a^{6} - \frac{1}{5}$, $\frac{1}{5} a^{19} - \frac{1}{5} a^{13} + \frac{1}{5} a^{7} - \frac{1}{5} a$, $\frac{1}{5} a^{20} - \frac{1}{5} a^{14} + \frac{1}{5} a^{8} - \frac{1}{5} a^{2}$, $\frac{1}{5} a^{21} - \frac{1}{5} a^{15} + \frac{1}{5} a^{9} - \frac{1}{5} a^{3}$, $\frac{1}{3140120548525} a^{22} + \frac{51460653714}{628024109705} a^{20} + \frac{174816507931}{3140120548525} a^{18} + \frac{1453912814519}{3140120548525} a^{16} + \frac{206892109419}{628024109705} a^{14} + \frac{1123625754299}{3140120548525} a^{12} + \frac{803708014511}{3140120548525} a^{10} - \frac{73095569372}{628024109705} a^{8} - \frac{411144212009}{3140120548525} a^{6} - \frac{1000770905871}{3140120548525} a^{4} - \frac{252578346066}{628024109705} a^{2} - \frac{1543772195661}{3140120548525}$, $\frac{1}{3140120548525} a^{23} + \frac{51460653714}{628024109705} a^{21} + \frac{174816507931}{3140120548525} a^{19} + \frac{1453912814519}{3140120548525} a^{17} + \frac{206892109419}{628024109705} a^{15} + \frac{1123625754299}{3140120548525} a^{13} + \frac{803708014511}{3140120548525} a^{11} - \frac{73095569372}{628024109705} a^{9} - \frac{411144212009}{3140120548525} a^{7} - \frac{1000770905871}{3140120548525} a^{5} - \frac{252578346066}{628024109705} a^{3} - \frac{1543772195661}{3140120548525} a$
Class group and class number
$C_{6}$, which has order $6$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{245903431384}{3140120548525} a^{23} + \frac{105667011281}{125604821941} a^{21} - \frac{17975844073174}{3140120548525} a^{19} + \frac{75426341030079}{3140120548525} a^{17} - \frac{46337912069137}{628024109705} a^{15} + \frac{486228806334304}{3140120548525} a^{13} - \frac{748357514123674}{3140120548525} a^{11} + \frac{145577986639644}{628024109705} a^{9} - \frac{477964007210989}{3140120548525} a^{7} + \frac{107298786752664}{3140120548525} a^{5} - \frac{1220293417317}{628024109705} a^{3} - \frac{12756519451156}{3140120548525} a \) (order $12$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 67326381.43157153 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_6$ (as 24T3):
| An abelian group of order 24 |
| The 24 conjugacy class representatives for $C_2^2\times C_6$ |
| Character table for $C_2^2\times C_6$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{4}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ |
| 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ | |
| $3$ | 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $13$ | 13.6.5.2 | $x^{6} - 13$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 13.6.5.2 | $x^{6} - 13$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 13.6.5.2 | $x^{6} - 13$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 13.6.5.2 | $x^{6} - 13$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |