Normalized defining polynomial
\( x^{24} - 17 x^{21} + 218 x^{18} - 1277 x^{15} + 5609 x^{12} + 3403 x^{9} - 692 x^{6} + 945 x^{3} + 729 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(16878953293629664473677397903764439609=3^{36}\cdot 13^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(117=3^{2}\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{117}(64,·)$, $\chi_{117}(1,·)$, $\chi_{117}(5,·)$, $\chi_{117}(70,·)$, $\chi_{117}(8,·)$, $\chi_{117}(73,·)$, $\chi_{117}(77,·)$, $\chi_{117}(14,·)$, $\chi_{117}(79,·)$, $\chi_{117}(83,·)$, $\chi_{117}(86,·)$, $\chi_{117}(25,·)$, $\chi_{117}(92,·)$, $\chi_{117}(31,·)$, $\chi_{117}(34,·)$, $\chi_{117}(38,·)$, $\chi_{117}(103,·)$, $\chi_{117}(40,·)$, $\chi_{117}(44,·)$, $\chi_{117}(109,·)$, $\chi_{117}(47,·)$, $\chi_{117}(112,·)$, $\chi_{117}(116,·)$, $\chi_{117}(53,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{7} + \frac{1}{3} a$, $\frac{1}{9} a^{14} + \frac{1}{9} a^{8} + \frac{1}{9} a^{2}$, $\frac{1}{9} a^{15} + \frac{1}{9} a^{9} + \frac{1}{9} a^{3}$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{10} + \frac{1}{9} a^{4}$, $\frac{1}{9} a^{17} + \frac{1}{9} a^{11} + \frac{1}{9} a^{5}$, $\frac{1}{1647} a^{18} - \frac{37}{1647} a^{15} + \frac{253}{1647} a^{12} - \frac{748}{1647} a^{9} + \frac{316}{1647} a^{6} - \frac{55}{1647} a^{3} - \frac{1}{61}$, $\frac{1}{1647} a^{19} - \frac{37}{1647} a^{16} + \frac{253}{1647} a^{13} - \frac{748}{1647} a^{10} + \frac{316}{1647} a^{7} - \frac{55}{1647} a^{4} - \frac{1}{61} a$, $\frac{1}{1647} a^{20} - \frac{37}{1647} a^{17} + \frac{70}{1647} a^{14} - \frac{748}{1647} a^{11} + \frac{133}{1647} a^{8} - \frac{55}{1647} a^{5} - \frac{70}{549} a^{2}$, $\frac{1}{333878023359} a^{21} + \frac{21560387}{111292674453} a^{18} + \frac{1698524242}{37097558151} a^{15} - \frac{14794673017}{111292674453} a^{12} + \frac{8631920026}{37097558151} a^{9} + \frac{29103961883}{111292674453} a^{6} + \frac{63648023030}{333878023359} a^{3} - \frac{1722997796}{12365852717}$, $\frac{1}{1001634070077} a^{22} - \frac{138037736}{1001634070077} a^{19} - \frac{51407798935}{1001634070077} a^{16} - \frac{95671899992}{1001634070077} a^{13} - \frac{178752124471}{1001634070077} a^{10} + \frac{23252714197}{1001634070077} a^{7} - \frac{333275577296}{1001634070077} a^{4} - \frac{13886131616}{37097558151} a$, $\frac{1}{3004902210231} a^{23} - \frac{746194427}{3004902210231} a^{20} - \frac{140198675821}{3004902210231} a^{17} + \frac{84342480544}{3004902210231} a^{14} - \frac{836777664133}{3004902210231} a^{11} + \frac{2704151200}{49260691971} a^{8} + \frac{590514436333}{3004902210231} a^{5} - \frac{12669893453}{37097558151} a^{2}$
Class group and class number
$C_{3}\times C_{6}$, which has order $18$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{186604117}{37097558151} a^{23} - \frac{9794458525}{111292674453} a^{20} + \frac{42314454700}{37097558151} a^{17} - \frac{259553185612}{37097558151} a^{14} + \frac{1178954688616}{37097558151} a^{11} + \frac{28434787913}{37097558151} a^{8} - \frac{14712814746}{12365852717} a^{5} + \frac{638512165729}{111292674453} a^{2} \) (order $18$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 533054958.55350393 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{12}$ (as 24T2):
| An abelian group of order 24 |
| The 24 conjugacy class representatives for $C_2\times C_{12}$ |
| Character table for $C_2\times C_{12}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }^{2}$ | R | ${\href{/LocalNumberField/5.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }^{2}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.9.10 | $x^{6} + 6 x^{4} + 3$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ |
| 3.6.9.10 | $x^{6} + 6 x^{4} + 3$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| 3.6.9.10 | $x^{6} + 6 x^{4} + 3$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| 3.6.9.10 | $x^{6} + 6 x^{4} + 3$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| $13$ | 13.12.9.2 | $x^{12} - 52 x^{8} + 676 x^{4} - 79092$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
| 13.12.9.2 | $x^{12} - 52 x^{8} + 676 x^{4} - 79092$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |