Normalized defining polynomial
\( x^{24} - x^{23} + 13 x^{22} - 10 x^{21} + 101 x^{20} - 67 x^{19} + 500 x^{18} - 254 x^{17} + 1781 x^{16} - 706 x^{15} + 4524 x^{14} - 1119 x^{13} + 8400 x^{12} - 1296 x^{11} + 11097 x^{10} - 456 x^{9} + 10104 x^{8} - 327 x^{7} + 5722 x^{6} + 151 x^{5} + 1858 x^{4} - 228 x^{3} + 104 x^{2} + 8 x + 1 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(161761786626698377317203521728515625=3^{12}\cdot 5^{18}\cdot 7^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(105=3\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{105}(64,·)$, $\chi_{105}(1,·)$, $\chi_{105}(4,·)$, $\chi_{105}(71,·)$, $\chi_{105}(73,·)$, $\chi_{105}(74,·)$, $\chi_{105}(11,·)$, $\chi_{105}(13,·)$, $\chi_{105}(79,·)$, $\chi_{105}(16,·)$, $\chi_{105}(17,·)$, $\chi_{105}(82,·)$, $\chi_{105}(83,·)$, $\chi_{105}(86,·)$, $\chi_{105}(68,·)$, $\chi_{105}(29,·)$, $\chi_{105}(97,·)$, $\chi_{105}(38,·)$, $\chi_{105}(103,·)$, $\chi_{105}(44,·)$, $\chi_{105}(46,·)$, $\chi_{105}(47,·)$, $\chi_{105}(52,·)$, $\chi_{105}(62,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $\frac{1}{211} a^{22} - \frac{49}{211} a^{21} - \frac{59}{211} a^{20} + \frac{62}{211} a^{19} + \frac{37}{211} a^{18} + \frac{65}{211} a^{16} + \frac{2}{211} a^{15} + \frac{54}{211} a^{14} + \frac{83}{211} a^{13} + \frac{42}{211} a^{12} - \frac{79}{211} a^{11} + \frac{59}{211} a^{10} - \frac{44}{211} a^{8} - \frac{32}{211} a^{7} - \frac{75}{211} a^{6} + \frac{28}{211} a^{5} + \frac{76}{211} a^{4} - \frac{51}{211} a^{3} + \frac{65}{211} a^{2} + \frac{6}{211} a + \frac{84}{211}$, $\frac{1}{456832271377309710091322972489} a^{23} - \frac{39348608473360543506793371}{456832271377309710091322972489} a^{22} - \frac{121507200911501365025189784988}{456832271377309710091322972489} a^{21} + \frac{53648090487354196230041004832}{456832271377309710091322972489} a^{20} + \frac{221050939650122458216446500756}{456832271377309710091322972489} a^{19} - \frac{22773360831694992579304494116}{456832271377309710091322972489} a^{18} + \frac{169677021334490974149675163630}{456832271377309710091322972489} a^{17} - \frac{216470569985541892362251563773}{456832271377309710091322972489} a^{16} - \frac{86043745972463006213189558297}{456832271377309710091322972489} a^{15} + \frac{143408409339316275696327972457}{456832271377309710091322972489} a^{14} + \frac{69025913972221943531548501575}{456832271377309710091322972489} a^{13} - \frac{130577167417326380509643943115}{456832271377309710091322972489} a^{12} - \frac{85941747520005224858615939552}{456832271377309710091322972489} a^{11} - \frac{73838701041902782781964402638}{456832271377309710091322972489} a^{10} + \frac{114052605614368853270552455217}{456832271377309710091322972489} a^{9} - \frac{112567794797683929215338800937}{456832271377309710091322972489} a^{8} - \frac{128589491869690871719250799738}{456832271377309710091322972489} a^{7} + \frac{24271269959522118767884412436}{456832271377309710091322972489} a^{6} + \frac{227647043511136034184717946103}{456832271377309710091322972489} a^{5} - \frac{183989869913187551332864801037}{456832271377309710091322972489} a^{4} - \frac{221138664117409888520439011546}{456832271377309710091322972489} a^{3} + \frac{48813271409280084327921348215}{456832271377309710091322972489} a^{2} - \frac{160986104412054575659933938600}{456832271377309710091322972489} a - \frac{183643322256744948450947283762}{456832271377309710091322972489}$
Class group and class number
$C_{26}$, which has order $26$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{40275169973073951974765831376}{456832271377309710091322972489} a^{23} + \frac{44176154617248139694770867886}{456832271377309710091322972489} a^{22} - \frac{526254136804407595493161055898}{456832271377309710091322972489} a^{21} + \frac{452133593815321818010938992798}{456832271377309710091322972489} a^{20} - \frac{4091053168577426392206461453599}{456832271377309710091322972489} a^{19} + \frac{3079183561562760803343853354932}{456832271377309710091322972489} a^{18} - \frac{20277701330267994781750663802336}{456832271377309710091322972489} a^{17} + \frac{12091439390537731797470379537475}{456832271377309710091322972489} a^{16} - \frac{72127968105567091836197407765794}{456832271377309710091322972489} a^{15} + \frac{35044226390447899636051562128720}{456832271377309710091322972489} a^{14} - \frac{182877981497119048911104545357783}{456832271377309710091322972489} a^{13} + \frac{61768276953422934216913385727128}{456832271377309710091322972489} a^{12} - \frac{337496456365936640068246521325888}{456832271377309710091322972489} a^{11} + \frac{83435537821838624839465578082000}{456832271377309710091322972489} a^{10} - \frac{442631703717544316978098014698024}{456832271377309710091322972489} a^{9} + \frac{59790576973265951487110728395544}{456832271377309710091322972489} a^{8} - \frac{396794199050430128674137048944060}{456832271377309710091322972489} a^{7} + \frac{51817097237324061116845908716956}{456832271377309710091322972489} a^{6} - \frac{221463053870749105378871015549672}{456832271377309710091322972489} a^{5} + \frac{74299008220157707971271501025}{2165081854868766398537075699} a^{4} - \frac{68856893084681350999602063672938}{456832271377309710091322972489} a^{3} + \frac{17068157777565733184268471093594}{456832271377309710091322972489} a^{2} - \frac{3585159392982813046942108051302}{456832271377309710091322972489} a + \frac{185853642695523601601844065182}{456832271377309710091322972489} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3391665.6012423597 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{12}$ (as 24T2):
| An abelian group of order 24 |
| The 24 conjugacy class representatives for $C_2\times C_{12}$ |
| Character table for $C_2\times C_{12}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }^{2}$ | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{8}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $7$ | 7.12.10.5 | $x^{12} + 56 x^{6} + 1323$ | $6$ | $2$ | $10$ | $C_{12}$ | $[\ ]_{6}^{2}$ |
| 7.12.10.5 | $x^{12} + 56 x^{6} + 1323$ | $6$ | $2$ | $10$ | $C_{12}$ | $[\ ]_{6}^{2}$ | |