Normalized defining polynomial
\( x^{24} - x^{23} + 5 x^{22} - 5 x^{21} + 20 x^{20} - 19 x^{19} + 74 x^{18} - 99 x^{17} + 299 x^{16} - 380 x^{15} + 1106 x^{14} - 1331 x^{13} + 3936 x^{12} - 4456 x^{11} + 5996 x^{10} - 6745 x^{9} + 8969 x^{8} - 7509 x^{7} + 10409 x^{6} + 2176 x^{5} + 455 x^{4} + 95 x^{3} + 20 x^{2} + 4 x + 1 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(161761786626698377317203521728515625=3^{12}\cdot 5^{18}\cdot 7^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(105=3\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{105}(64,·)$, $\chi_{105}(1,·)$, $\chi_{105}(2,·)$, $\chi_{105}(4,·)$, $\chi_{105}(8,·)$, $\chi_{105}(76,·)$, $\chi_{105}(79,·)$, $\chi_{105}(16,·)$, $\chi_{105}(17,·)$, $\chi_{105}(19,·)$, $\chi_{105}(23,·)$, $\chi_{105}(68,·)$, $\chi_{105}(92,·)$, $\chi_{105}(94,·)$, $\chi_{105}(31,·)$, $\chi_{105}(32,·)$, $\chi_{105}(34,·)$, $\chi_{105}(38,·)$, $\chi_{105}(46,·)$, $\chi_{105}(47,·)$, $\chi_{105}(83,·)$, $\chi_{105}(53,·)$, $\chi_{105}(61,·)$, $\chi_{105}(62,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{2146586119} a^{19} - \frac{80671238}{2146586119} a^{18} - \frac{363514156}{2146586119} a^{17} + \frac{40829208}{2146586119} a^{16} + \frac{329015334}{2146586119} a^{15} + \frac{607502231}{2146586119} a^{14} - \frac{911196026}{2146586119} a^{13} - \frac{744303332}{2146586119} a^{12} + \frac{227825652}{2146586119} a^{11} + \frac{10477406}{2146586119} a^{10} + \frac{981394019}{2146586119} a^{9} + \frac{716121545}{2146586119} a^{8} + \frac{876952384}{2146586119} a^{7} - \frac{537125891}{2146586119} a^{6} + \frac{479576926}{2146586119} a^{5} + \frac{489657714}{2146586119} a^{4} - \frac{256694009}{2146586119} a^{3} + \frac{377586222}{2146586119} a^{2} + \frac{74691672}{2146586119} a - \frac{80780534}{2146586119}$, $\frac{1}{2146586119} a^{20} - \frac{935272120}{2146586119} a^{18} + \frac{674003709}{2146586119} a^{17} - \frac{121919952}{2146586119} a^{16} - \frac{923153692}{2146586119} a^{15} - \frac{226411398}{2146586119} a^{14} + \frac{744303298}{2146586119} a^{13} + \frac{151546479}{2146586119} a^{12} - \frac{642200301}{2146586119} a^{11} - \frac{576258079}{2146586119} a^{10} + \frac{15925612}{2146586119} a^{9} - \frac{748133373}{2146586119} a^{8} - \frac{850996194}{2146586119} a^{7} - \frac{510269076}{2146586119} a^{6} - \frac{617694871}{2146586119} a^{5} + \frac{572504157}{2146586119} a^{4} - \frac{907932223}{2146586119} a^{3} - \frac{909147676}{2146586119} a^{2} + \frac{185130283}{2146586119} a + \frac{560390440}{2146586119}$, $\frac{1}{2146586119} a^{21} - \frac{1067568172}{2146586119} a^{14} + \frac{991307695}{2146586119} a^{7} + \frac{401941670}{2146586119}$, $\frac{1}{2146586119} a^{22} - \frac{1067568172}{2146586119} a^{15} + \frac{991307695}{2146586119} a^{8} + \frac{401941670}{2146586119} a$, $\frac{1}{2146586119} a^{23} - \frac{1067568172}{2146586119} a^{16} + \frac{991307695}{2146586119} a^{9} + \frac{401941670}{2146586119} a^{2}$
Class group and class number
$C_{26}$, which has order $26$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{375299640}{2146586119} a^{23} + \frac{469124550}{2146586119} a^{22} - \frac{1970323110}{2146586119} a^{21} + \frac{2345622750}{2146586119} a^{20} - \frac{7975180155}{2146586119} a^{19} + \frac{9007191360}{2146586119} a^{18} - \frac{29554846650}{2146586119} a^{17} + \frac{44097707700}{2146586119} a^{16} - \frac{121503258450}{2146586119} a^{15} + \frac{170667511290}{2146586119} a^{14} - \frac{450734867640}{2146586119} a^{13} + \frac{603295786795}{2146586119} a^{12} - \frac{1602060338250}{2146586119} a^{11} + \frac{2041630041600}{2146586119} a^{10} - \frac{2668380440400}{2146586119} a^{9} + \frac{3093970232160}{2146586119} a^{8} - \frac{3998911489110}{2146586119} a^{7} + \frac{126194503950}{74020211} a^{6} - \frac{4610521190949}{2146586119} a^{5} + \frac{159971471550}{2146586119} a^{4} + \frac{33401667960}{2146586119} a^{3} + \frac{7036868250}{2146586119} a^{2} + \frac{1407373650}{2146586119} a + \frac{375299640}{2146586119} \) (order $14$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16114643.667937363 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{12}$ (as 24T2):
| An abelian group of order 24 |
| The 24 conjugacy class representatives for $C_2\times C_{12}$ |
| Character table for $C_2\times C_{12}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }^{2}$ | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{24}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.12.6.1 | $x^{12} - 243 x^{2} + 1458$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |
| 3.12.6.1 | $x^{12} - 243 x^{2} + 1458$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ | |
| 5 | Data not computed | ||||||
| 7 | Data not computed | ||||||