Normalized defining polynomial
\( x^{24} - x^{23} + 7 x^{22} - 7 x^{21} + 35 x^{20} - 34 x^{19} + 153 x^{18} - 146 x^{17} + 629 x^{16} - 588 x^{15} + 1618 x^{14} - 1394 x^{13} + 3557 x^{12} - 2395 x^{11} + 6504 x^{10} - 4802 x^{9} + 10534 x^{8} - 8224 x^{7} + 6187 x^{6} - 3548 x^{5} + 2534 x^{4} - 378 x^{3} + 56 x^{2} - 8 x + 1 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(161761786626698377317203521728515625=3^{12}\cdot 5^{18}\cdot 7^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(105=3\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{105}(64,·)$, $\chi_{105}(1,·)$, $\chi_{105}(67,·)$, $\chi_{105}(4,·)$, $\chi_{105}(79,·)$, $\chi_{105}(16,·)$, $\chi_{105}(17,·)$, $\chi_{105}(83,·)$, $\chi_{105}(22,·)$, $\chi_{105}(89,·)$, $\chi_{105}(88,·)$, $\chi_{105}(68,·)$, $\chi_{105}(26,·)$, $\chi_{105}(101,·)$, $\chi_{105}(37,·)$, $\chi_{105}(38,·)$, $\chi_{105}(104,·)$, $\chi_{105}(41,·)$, $\chi_{105}(43,·)$, $\chi_{105}(46,·)$, $\chi_{105}(47,·)$, $\chi_{105}(58,·)$, $\chi_{105}(59,·)$, $\chi_{105}(62,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{586382566462601} a^{21} - \frac{171538548989333}{586382566462601} a^{20} - \frac{70125785132858}{586382566462601} a^{19} + \frac{213659624122068}{586382566462601} a^{18} + \frac{95502070532581}{586382566462601} a^{17} - \frac{192023246337468}{586382566462601} a^{16} - \frac{90437479961259}{586382566462601} a^{15} - \frac{27070111217202}{586382566462601} a^{14} + \frac{33815946558713}{586382566462601} a^{13} - \frac{180351711312451}{586382566462601} a^{12} + \frac{82019629063228}{586382566462601} a^{11} + \frac{214886966053931}{586382566462601} a^{10} - \frac{109698136901594}{586382566462601} a^{9} + \frac{158581104538649}{586382566462601} a^{8} + \frac{52627448885242}{586382566462601} a^{7} - \frac{205693131590540}{586382566462601} a^{6} - \frac{5661939767723}{586382566462601} a^{5} - \frac{285708907636718}{586382566462601} a^{4} - \frac{216861545151990}{586382566462601} a^{3} + \frac{120963384291680}{586382566462601} a^{2} + \frac{206237200571440}{586382566462601} a - \frac{186258710837106}{586382566462601}$, $\frac{1}{586382566462601} a^{22} - \frac{186215045205283}{586382566462601} a^{20} - \frac{15661384932351}{586382566462601} a^{19} + \frac{71136246625847}{586382566462601} a^{18} - \frac{94132030330856}{586382566462601} a^{17} + \frac{173051526941893}{586382566462601} a^{16} - \frac{276103737934819}{586382566462601} a^{15} + \frac{105342405320544}{586382566462601} a^{14} + \frac{62354549756924}{586382566462601} a^{13} + \frac{12272366125966}{586382566462601} a^{12} + \frac{195850814920183}{586382566462601} a^{11} + \frac{102355701839496}{586382566462601} a^{10} - \frac{279782116565472}{586382566462601} a^{9} + \frac{193898351814680}{586382566462601} a^{8} - \frac{64494144274257}{586382566462601} a^{7} + \frac{72569749588502}{586382566462601} a^{6} + \frac{92788436701071}{586382566462601} a^{5} - \frac{107780608046877}{586382566462601} a^{4} - \frac{241904384436198}{586382566462601} a^{3} - \frac{161289357740575}{586382566462601} a^{2} + \frac{268365935802107}{586382566462601} a - \frac{139808032505916}{586382566462601}$, $\frac{1}{586382566462601} a^{23} - \frac{179373992853381}{586382566462601} a^{20} - \frac{161398474765477}{586382566462601} a^{19} + \frac{273417314765986}{586382566462601} a^{18} + \frac{42975809566870}{586382566462601} a^{17} + \frac{211995488701823}{586382566462601} a^{16} + \frac{219490812382700}{586382566462601} a^{15} - \frac{264594525294754}{586382566462601} a^{14} - \frac{60077322863200}{586382566462601} a^{13} - \frac{135662957979370}{586382566462601} a^{12} - \frac{285027841217279}{586382566462601} a^{11} - \frac{23733207765291}{586382566462601} a^{10} - \frac{269918783075074}{586382566462601} a^{9} + \frac{237259122924358}{586382566462601} a^{8} + \frac{243057377254032}{586382566462601} a^{7} - \frac{115133424425142}{586382566462601} a^{6} - \frac{257645977686546}{586382566462601} a^{5} - \frac{34917752774359}{586382566462601} a^{4} + \frac{34716266604898}{586382566462601} a^{3} - \frac{173574082386098}{586382566462601} a^{2} - \frac{278327275127020}{586382566462601} a - \frac{57165082815132}{586382566462601}$
Class group and class number
$C_{26}$, which has order $26$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{87543327880547}{586382566462601} a^{23} + \frac{87683025935477}{586382566462601} a^{22} - \frac{612803295163829}{586382566462601} a^{21} + \frac{613455219420169}{586382566462601} a^{20} - \frac{3064007668486569}{586382566462601} a^{19} + \frac{2979243826028043}{586382566462601} a^{18} - \frac{13393966184659606}{586382566462601} a^{17} + \frac{12792571563981727}{586382566462601} a^{16} - \frac{55063798633488708}{586382566462601} a^{15} + \frac{51520059395520031}{586382566462601} a^{14} - \frac{141639889116674326}{586382566462601} a^{13} + \frac{122085760214284783}{586382566462601} a^{12} - \frac{311364562414467569}{586382566462601} a^{11} + \frac{209761940158527960}{586382566462601} a^{10} - \frac{569255340353525742}{586382566462601} a^{9} + \frac{420516518690863154}{586382566462601} a^{8} - \frac{922127632142534048}{586382566462601} a^{7} + \frac{719908900999969793}{586382566462601} a^{6} - \frac{541569125735784244}{586382566462601} a^{5} + \frac{308960363330819046}{586382566462601} a^{4} - \frac{221784594681567918}{586382566462601} a^{3} + \frac{33083880809898856}{586382566462601} a^{2} - \frac{4901308776871192}{586382566462601} a + \frac{700183641980291}{586382566462601} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9216624.607005743 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{12}$ (as 24T2):
| An abelian group of order 24 |
| The 24 conjugacy class representatives for $C_2\times C_{12}$ |
| Character table for $C_2\times C_{12}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }^{2}$ | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{24}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $5$ | 5.12.9.2 | $x^{12} - 10 x^{8} + 25 x^{4} - 500$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
| 5.12.9.2 | $x^{12} - 10 x^{8} + 25 x^{4} - 500$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ | |
| 7 | Data not computed | ||||||