Normalized defining polynomial
\( x^{24} + 48 x^{22} + 936 x^{20} + 9744 x^{18} + 59940 x^{16} + 227664 x^{14} + 542232 x^{12} + 807840 x^{10} + 737748 x^{8} + 395712 x^{6} + 115344 x^{4} + 15552 x^{2} + 648 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1486465269728735333725176976133731985582456832=2^{93}\cdot 3^{36}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $76.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(288=2^{5}\cdot 3^{2}\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{288}(1,·)$, $\chi_{288}(5,·)$, $\chi_{288}(193,·)$, $\chi_{288}(265,·)$, $\chi_{288}(269,·)$, $\chi_{288}(77,·)$, $\chi_{288}(145,·)$, $\chi_{288}(149,·)$, $\chi_{288}(217,·)$, $\chi_{288}(25,·)$, $\chi_{288}(29,·)$, $\chi_{288}(197,·)$, $\chi_{288}(97,·)$, $\chi_{288}(101,·)$, $\chi_{288}(241,·)$, $\chi_{288}(169,·)$, $\chi_{288}(173,·)$, $\chi_{288}(221,·)$, $\chi_{288}(49,·)$, $\chi_{288}(53,·)$, $\chi_{288}(73,·)$, $\chi_{288}(121,·)$, $\chi_{288}(125,·)$, $\chi_{288}(245,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6}$, $\frac{1}{3} a^{7}$, $\frac{1}{6} a^{8}$, $\frac{1}{6} a^{9}$, $\frac{1}{6} a^{10}$, $\frac{1}{6} a^{11}$, $\frac{1}{18} a^{12}$, $\frac{1}{18} a^{13}$, $\frac{1}{18} a^{14}$, $\frac{1}{18} a^{15}$, $\frac{1}{612} a^{16} + \frac{8}{17}$, $\frac{1}{612} a^{17} + \frac{8}{17} a$, $\frac{1}{1836} a^{18} - \frac{3}{17} a^{2}$, $\frac{1}{1836} a^{19} - \frac{3}{17} a^{3}$, $\frac{1}{1836} a^{20} - \frac{3}{17} a^{4}$, $\frac{1}{1836} a^{21} - \frac{3}{17} a^{5}$, $\frac{1}{8458452} a^{22} - \frac{29}{156638} a^{20} - \frac{29}{313276} a^{18} + \frac{329}{1409742} a^{16} - \frac{148}{41463} a^{14} + \frac{424}{41463} a^{12} + \frac{547}{9214} a^{10} - \frac{758}{13821} a^{8} - \frac{14357}{234957} a^{6} - \frac{25851}{78319} a^{4} - \frac{28659}{78319} a^{2} + \frac{24525}{78319}$, $\frac{1}{8458452} a^{23} - \frac{29}{156638} a^{21} - \frac{29}{313276} a^{19} + \frac{329}{1409742} a^{17} - \frac{148}{41463} a^{15} + \frac{424}{41463} a^{13} + \frac{547}{9214} a^{11} - \frac{758}{13821} a^{9} - \frac{14357}{234957} a^{7} - \frac{25851}{78319} a^{5} - \frac{28659}{78319} a^{3} + \frac{24525}{78319} a$
Class group and class number
$C_{9}\times C_{8226}$, which has order $74034$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 165705493.8155171 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 24 |
| The 24 conjugacy class representatives for $C_{24}$ |
| Character table for $C_{24}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{16})^+\), 6.6.3359232.1, 8.0.173946175488.1, 12.12.369768517790072832.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $24$ | ${\href{/LocalNumberField/7.12.0.1}{12} }^{2}$ | $24$ | $24$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{24}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{3}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }^{2}$ | $24$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{3}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }^{2}$ | $24$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{3}$ | $24$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||