Properties

Label 24.0.146...136.1
Degree $24$
Signature $[0, 12]$
Discriminant $1.461\times 10^{34}$
Root discriminant \(26.52\)
Ramified primes $2,31,37$
Class number $4$ (GRH)
Class group [4] (GRH)
Galois group $C_2^3\times S_4$ (as 24T400)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^24 - 8*x^20 + 16*x^16 + 16*x^12 + 256*x^8 - 2048*x^4 + 4096)
 
gp: K = bnfinit(y^24 - 8*y^20 + 16*y^16 + 16*y^12 + 256*y^8 - 2048*y^4 + 4096, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^24 - 8*x^20 + 16*x^16 + 16*x^12 + 256*x^8 - 2048*x^4 + 4096);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^24 - 8*x^20 + 16*x^16 + 16*x^12 + 256*x^8 - 2048*x^4 + 4096)
 

\( x^{24} - 8x^{20} + 16x^{16} + 16x^{12} + 256x^{8} - 2048x^{4} + 4096 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $24$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 12]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(14608995065922872079188435597787136\) \(\medspace = 2^{52}\cdot 31^{4}\cdot 37^{8}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(26.52\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{13/6}31^{1/2}37^{1/2}\approx 152.05943281385314$
Ramified primes:   \(2\), \(31\), \(37\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $8$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is a CM field.
Reflex fields:  unavailable$^{2048}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}$, $\frac{1}{2}a^{4}$, $\frac{1}{2}a^{5}$, $\frac{1}{4}a^{6}$, $\frac{1}{4}a^{7}$, $\frac{1}{8}a^{8}-\frac{1}{2}a^{2}$, $\frac{1}{8}a^{9}$, $\frac{1}{8}a^{10}$, $\frac{1}{16}a^{11}-\frac{1}{4}a^{5}$, $\frac{1}{16}a^{12}$, $\frac{1}{32}a^{13}-\frac{1}{16}a^{10}-\frac{1}{8}a^{7}-\frac{1}{4}a^{4}$, $\frac{1}{32}a^{14}-\frac{1}{2}a^{2}$, $\frac{1}{64}a^{15}-\frac{1}{4}a^{3}$, $\frac{1}{64}a^{16}-\frac{1}{4}a^{4}$, $\frac{1}{128}a^{17}+\frac{1}{8}a^{5}$, $\frac{1}{256}a^{18}-\frac{1}{16}a^{10}+\frac{1}{16}a^{6}-\frac{1}{2}a^{2}$, $\frac{1}{512}a^{19}-\frac{1}{32}a^{11}-\frac{1}{16}a^{10}-\frac{3}{32}a^{7}-\frac{1}{4}a^{5}-\frac{1}{4}a^{4}-\frac{1}{4}a^{3}-\frac{1}{2}a$, $\frac{1}{512}a^{20}-\frac{1}{32}a^{12}+\frac{1}{32}a^{8}-\frac{1}{4}a^{4}$, $\frac{1}{1024}a^{21}-\frac{1}{64}a^{13}-\frac{1}{16}a^{10}+\frac{1}{64}a^{9}-\frac{1}{8}a^{7}-\frac{1}{8}a^{5}-\frac{1}{4}a^{4}$, $\frac{1}{2048}a^{22}-\frac{1}{128}a^{16}+\frac{1}{128}a^{14}-\frac{7}{128}a^{10}-\frac{1}{16}a^{6}-\frac{1}{8}a^{4}$, $\frac{1}{4096}a^{23}-\frac{1}{1024}a^{20}-\frac{1}{256}a^{17}-\frac{1}{128}a^{16}+\frac{1}{256}a^{15}-\frac{1}{64}a^{14}-\frac{1}{64}a^{12}-\frac{7}{256}a^{11}-\frac{1}{16}a^{9}-\frac{1}{64}a^{8}+\frac{3}{32}a^{7}-\frac{1}{16}a^{5}-\frac{1}{4}a^{3}-\frac{1}{4}a^{2}-\frac{1}{2}a$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{4}$, which has order $4$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $11$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( \frac{3}{1024} a^{21} - \frac{1}{64} a^{17} - \frac{1}{64} a^{13} + \frac{3}{64} a^{9} + \frac{7}{8} a^{5} - 3 a \)  (order $8$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{1}{1024}a^{21}-\frac{3}{128}a^{17}+\frac{1}{64}a^{13}+\frac{9}{64}a^{9}+\frac{1}{2}a^{5}-6a$, $\frac{5}{2048}a^{23}+\frac{1}{512}a^{21}-\frac{5}{512}a^{19}-\frac{1}{64}a^{17}-\frac{1}{128}a^{15}+\frac{1}{128}a^{11}+\frac{1}{32}a^{9}+\frac{25}{32}a^{7}+\frac{3}{4}a^{5}-2a^{3}-\frac{7}{2}a+1$, $\frac{1}{1024}a^{22}+\frac{3}{1024}a^{21}+\frac{1}{256}a^{18}-\frac{1}{64}a^{17}-\frac{1}{64}a^{14}-\frac{1}{64}a^{13}-\frac{3}{64}a^{10}+\frac{3}{64}a^{9}+\frac{3}{16}a^{6}+\frac{7}{8}a^{5}+a^{2}-3a+1$, $\frac{7}{2048}a^{22}-\frac{1}{64}a^{18}-\frac{1}{128}a^{16}-\frac{1}{128}a^{14}-\frac{1}{128}a^{10}+\frac{17}{16}a^{6}+\frac{3}{8}a^{4}-3a^{2}-2$, $\frac{5}{2048}a^{23}+\frac{1}{256}a^{21}-\frac{3}{256}a^{19}-\frac{3}{128}a^{17}-\frac{1}{128}a^{15}+\frac{5}{128}a^{11}+\frac{1}{16}a^{9}+\frac{3}{4}a^{7}+\frac{9}{8}a^{5}-\frac{11}{4}a^{3}-5a$, $\frac{7}{4096}a^{23}+\frac{3}{1024}a^{22}+\frac{1}{512}a^{21}+\frac{7}{1024}a^{20}-\frac{3}{256}a^{19}-\frac{5}{256}a^{18}-\frac{5}{256}a^{17}-\frac{5}{128}a^{16}-\frac{1}{256}a^{15}-\frac{1}{64}a^{12}+\frac{15}{256}a^{11}+\frac{3}{64}a^{10}+\frac{3}{32}a^{9}+\frac{7}{64}a^{8}+\frac{19}{32}a^{7}+\frac{17}{16}a^{6}+\frac{11}{16}a^{5}+\frac{9}{4}a^{4}-\frac{11}{4}a^{3}-\frac{17}{4}a^{2}-\frac{9}{2}a-9$, $\frac{13}{4096}a^{23}-\frac{1}{512}a^{22}+\frac{1}{512}a^{21}-\frac{3}{1024}a^{20}-\frac{3}{256}a^{19}-\frac{1}{256}a^{17}+\frac{1}{128}a^{16}-\frac{3}{256}a^{15}+\frac{1}{64}a^{14}+\frac{1}{64}a^{12}+\frac{5}{256}a^{11}+\frac{1}{32}a^{10}-\frac{1}{32}a^{9}-\frac{3}{64}a^{8}+\frac{29}{32}a^{7}-\frac{1}{2}a^{6}+\frac{7}{16}a^{5}-\frac{3}{4}a^{4}-\frac{9}{4}a^{3}-\frac{1}{4}a^{2}-\frac{1}{2}a+2$, $\frac{1}{1024}a^{21}-\frac{1}{512}a^{19}-\frac{1}{64}a^{13}+\frac{1}{32}a^{11}+\frac{1}{64}a^{9}-\frac{1}{32}a^{7}+\frac{1}{8}a^{5}-\frac{1}{4}a^{3}+\frac{1}{2}a+1$, $\frac{1}{1024}a^{21}-\frac{1}{512}a^{19}-\frac{1}{64}a^{13}+\frac{1}{32}a^{11}+\frac{1}{64}a^{9}-\frac{1}{32}a^{7}+\frac{1}{8}a^{5}-\frac{1}{4}a^{3}+\frac{1}{2}a-1$, $\frac{5}{2048}a^{23}-\frac{3}{2048}a^{22}+\frac{1}{512}a^{21}-\frac{5}{512}a^{19}-\frac{1}{128}a^{17}-\frac{1}{128}a^{16}-\frac{1}{128}a^{15}+\frac{1}{128}a^{14}+\frac{1}{128}a^{11}+\frac{5}{128}a^{10}+\frac{1}{32}a^{9}+\frac{25}{32}a^{7}-\frac{5}{16}a^{6}+\frac{3}{8}a^{5}+\frac{3}{8}a^{4}-2a^{3}-\frac{1}{2}a^{2}-\frac{3}{2}a-2$, $\frac{9}{4096}a^{23}-\frac{1}{256}a^{22}-\frac{1}{256}a^{21}-\frac{1}{1024}a^{20}-\frac{3}{512}a^{19}+\frac{1}{64}a^{18}+\frac{7}{256}a^{17}+\frac{3}{128}a^{16}-\frac{3}{256}a^{15}+\frac{1}{64}a^{14}-\frac{1}{64}a^{12}-\frac{7}{256}a^{11}-\frac{1}{8}a^{9}-\frac{9}{64}a^{8}+\frac{5}{8}a^{7}-\frac{5}{4}a^{6}-\frac{21}{16}a^{5}-\frac{3}{4}a^{4}-\frac{3}{4}a^{3}+\frac{11}{4}a^{2}+6a+6$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 64723765.21921788 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{12}\cdot 64723765.21921788 \cdot 4}{8\cdot\sqrt{14608995065922872079188435597787136}}\cr\approx \mathstrut & 1.01363600199058 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^24 - 8*x^20 + 16*x^16 + 16*x^12 + 256*x^8 - 2048*x^4 + 4096)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^24 - 8*x^20 + 16*x^16 + 16*x^12 + 256*x^8 - 2048*x^4 + 4096, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^24 - 8*x^20 + 16*x^16 + 16*x^12 + 256*x^8 - 2048*x^4 + 4096);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^24 - 8*x^20 + 16*x^16 + 16*x^12 + 256*x^8 - 2048*x^4 + 4096);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^3\times S_4$ (as 24T400):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 192
The 40 conjugacy class representatives for $C_2^3\times S_4$
Character table for $C_2^3\times S_4$ is not computed

Intermediate fields

\(\Q(\sqrt{-2}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-1}) \), 3.3.148.1, \(\Q(\zeta_{8})\), 6.6.2803712.1, 6.0.2803712.1, 6.6.86915072.1, 6.0.86915072.1, 6.0.350464.1, 6.6.10864384.1, 6.0.679024.1, 12.0.118034839699456.1, 12.0.125772815663104.1, 12.0.120867675852242944.2, 12.12.120867675852242944.1, 12.0.120867675852242944.1, 12.0.7554229740765184.1, 12.0.7554229740765184.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 24 siblings: data not computed
Degree 32 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.6.0.1}{6} }^{4}$ ${\href{/padicField/5.4.0.1}{4} }^{4}{,}\,{\href{/padicField/5.2.0.1}{2} }^{4}$ ${\href{/padicField/7.6.0.1}{6} }^{4}$ ${\href{/padicField/11.6.0.1}{6} }^{4}$ ${\href{/padicField/13.4.0.1}{4} }^{4}{,}\,{\href{/padicField/13.2.0.1}{2} }^{4}$ ${\href{/padicField/17.4.0.1}{4} }^{4}{,}\,{\href{/padicField/17.1.0.1}{1} }^{8}$ ${\href{/padicField/19.2.0.1}{2} }^{12}$ ${\href{/padicField/23.4.0.1}{4} }^{4}{,}\,{\href{/padicField/23.2.0.1}{2} }^{4}$ ${\href{/padicField/29.4.0.1}{4} }^{4}{,}\,{\href{/padicField/29.2.0.1}{2} }^{4}$ R R ${\href{/padicField/41.3.0.1}{3} }^{8}$ ${\href{/padicField/43.4.0.1}{4} }^{4}{,}\,{\href{/padicField/43.2.0.1}{2} }^{4}$ ${\href{/padicField/47.6.0.1}{6} }^{4}$ ${\href{/padicField/53.6.0.1}{6} }^{4}$ ${\href{/padicField/59.4.0.1}{4} }^{4}{,}\,{\href{/padicField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.12.26.64$x^{12} + 2 x^{10} + 4 x^{9} + 2 x^{8} + 2 x^{6} + 4 x^{5} + 4 x^{3} + 4 x^{2} + 2$$12$$1$$26$$S_3 \times C_2^2$$[2, 3]_{3}^{2}$
2.12.26.64$x^{12} + 2 x^{10} + 4 x^{9} + 2 x^{8} + 2 x^{6} + 4 x^{5} + 4 x^{3} + 4 x^{2} + 2$$12$$1$$26$$S_3 \times C_2^2$$[2, 3]_{3}^{2}$
\(31\) Copy content Toggle raw display 31.2.0.1$x^{2} + 29 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
31.2.0.1$x^{2} + 29 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
31.2.0.1$x^{2} + 29 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
31.2.0.1$x^{2} + 29 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
31.2.0.1$x^{2} + 29 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
31.2.0.1$x^{2} + 29 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
31.2.0.1$x^{2} + 29 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
31.2.0.1$x^{2} + 29 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
31.4.2.1$x^{4} + 58 x^{3} + 909 x^{2} + 1972 x + 26855$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
31.4.2.1$x^{4} + 58 x^{3} + 909 x^{2} + 1972 x + 26855$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
\(37\) Copy content Toggle raw display 37.2.0.1$x^{2} + 33 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
37.2.0.1$x^{2} + 33 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
37.2.0.1$x^{2} + 33 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
37.2.0.1$x^{2} + 33 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
37.4.2.1$x^{4} + 1916 x^{3} + 948367 x^{2} + 29317674 x + 2943243$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
37.4.2.1$x^{4} + 1916 x^{3} + 948367 x^{2} + 29317674 x + 2943243$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
37.4.2.1$x^{4} + 1916 x^{3} + 948367 x^{2} + 29317674 x + 2943243$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
37.4.2.1$x^{4} + 1916 x^{3} + 948367 x^{2} + 29317674 x + 2943243$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$