Normalized defining polynomial
\( x^{24} - x^{23} - x^{22} + 11 x^{21} - 16 x^{20} + 61 x^{19} + 56 x^{18} - 283 x^{17} + 595 x^{16} + 483 x^{15} + 1068 x^{14} + 1736 x^{13} + 1610 x^{12} + 2951 x^{11} + 2205 x^{10} + 2925 x^{9} + 1727 x^{8} - 7188 x^{7} + 3314 x^{6} - 3879 x^{5} - 3407 x^{4} + 1379 x^{3} + 1568 x^{2} - 1715 x + 2401 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(143394368963416893742964176177978515625=5^{18}\cdot 19^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(95=5\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{95}(64,·)$, $\chi_{95}(1,·)$, $\chi_{95}(68,·)$, $\chi_{95}(69,·)$, $\chi_{95}(7,·)$, $\chi_{95}(8,·)$, $\chi_{95}(11,·)$, $\chi_{95}(12,·)$, $\chi_{95}(77,·)$, $\chi_{95}(18,·)$, $\chi_{95}(83,·)$, $\chi_{95}(84,·)$, $\chi_{95}(87,·)$, $\chi_{95}(88,·)$, $\chi_{95}(26,·)$, $\chi_{95}(27,·)$, $\chi_{95}(94,·)$, $\chi_{95}(31,·)$, $\chi_{95}(37,·)$, $\chi_{95}(39,·)$, $\chi_{95}(46,·)$, $\chi_{95}(49,·)$, $\chi_{95}(56,·)$, $\chi_{95}(58,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{11} a^{9} - \frac{2}{11} a^{8} + \frac{4}{11} a^{7} + \frac{3}{11} a^{6} + \frac{5}{11} a^{5} + \frac{1}{11} a^{4} - \frac{2}{11} a^{3} + \frac{4}{11} a^{2} + \frac{3}{11} a + \frac{5}{11}$, $\frac{1}{11} a^{10} - \frac{1}{11}$, $\frac{1}{11} a^{11} - \frac{1}{11} a$, $\frac{1}{11} a^{12} - \frac{1}{11} a^{2}$, $\frac{1}{11} a^{13} - \frac{1}{11} a^{3}$, $\frac{1}{121} a^{14} - \frac{2}{121} a^{13} + \frac{4}{121} a^{12} + \frac{3}{121} a^{11} + \frac{5}{121} a^{10} + \frac{2}{121} a^{9} - \frac{4}{121} a^{8} + \frac{8}{121} a^{7} - \frac{16}{121} a^{6} + \frac{32}{121} a^{5} + \frac{1}{121} a^{4} - \frac{2}{121} a^{3} + \frac{4}{121} a^{2} - \frac{19}{121} a + \frac{27}{121}$, $\frac{1}{121} a^{15} + \frac{1}{121} a^{10} - \frac{56}{121} a^{5} - \frac{56}{121}$, $\frac{1}{121} a^{16} + \frac{1}{121} a^{11} - \frac{56}{121} a^{6} - \frac{56}{121} a$, $\frac{1}{847} a^{17} + \frac{3}{847} a^{16} + \frac{2}{847} a^{15} + \frac{23}{847} a^{12} + \frac{2}{121} a^{11} + \frac{5}{121} a^{10} - \frac{3}{77} a^{9} + \frac{4}{11} a^{8} + \frac{25}{121} a^{7} + \frac{338}{847} a^{6} - \frac{5}{121} a^{5} - \frac{2}{11} a^{4} - \frac{38}{77} a^{3} + \frac{153}{847} a^{2} - \frac{157}{847} a - \frac{27}{121}$, $\frac{1}{161777} a^{18} + \frac{19}{161777} a^{17} + \frac{9}{14707} a^{16} - \frac{423}{161777} a^{15} - \frac{24}{23111} a^{14} + \frac{7135}{161777} a^{13} - \frac{6835}{161777} a^{12} - \frac{633}{23111} a^{11} - \frac{768}{161777} a^{10} + \frac{5296}{161777} a^{9} + \frac{4}{191} a^{8} - \frac{38323}{161777} a^{7} + \frac{66917}{161777} a^{6} - \frac{5392}{23111} a^{5} - \frac{7362}{161777} a^{4} - \frac{2657}{161777} a^{3} - \frac{1461}{161777} a^{2} - \frac{13495}{161777} a + \frac{11096}{23111}$, $\frac{1}{1779547} a^{19} - \frac{2}{1779547} a^{18} - \frac{491}{1779547} a^{17} + \frac{6284}{1779547} a^{16} + \frac{5659}{1779547} a^{15} - \frac{6718}{1779547} a^{14} + \frac{54576}{1779547} a^{13} - \frac{67176}{1779547} a^{12} - \frac{56124}{1779547} a^{11} + \frac{28109}{1779547} a^{10} - \frac{48045}{1779547} a^{9} + \frac{210072}{1779547} a^{8} + \frac{566864}{1779547} a^{7} - \frac{518179}{1779547} a^{6} - \frac{791061}{1779547} a^{5} + \frac{90443}{1779547} a^{4} + \frac{139522}{1779547} a^{3} + \frac{889101}{1779547} a^{2} - \frac{567575}{1779547} a + \frac{75258}{254221}$, $\frac{1}{1779547} a^{20} - \frac{3}{847} a^{16} + \frac{159}{254221} a^{15} + \frac{1}{847} a^{14} - \frac{5}{121} a^{13} - \frac{1}{121} a^{12} + \frac{2}{77} a^{11} + \frac{708}{23111} a^{10} + \frac{5}{121} a^{9} + \frac{414}{847} a^{8} + \frac{20}{121} a^{7} - \frac{16}{121} a^{6} + \frac{63465}{254221} a^{5} - \frac{47}{121} a^{4} - \frac{5}{121} a^{3} - \frac{216}{847} a^{2} - \frac{137}{847} a - \frac{86391}{254221}$, $\frac{1}{19575017} a^{21} + \frac{3}{19575017} a^{19} + \frac{60}{19575017} a^{18} + \frac{8185}{19575017} a^{17} + \frac{6420}{1779547} a^{16} - \frac{67668}{19575017} a^{15} + \frac{57000}{19575017} a^{14} + \frac{781708}{19575017} a^{13} + \frac{378953}{19575017} a^{12} - \frac{38627}{19575017} a^{11} + \frac{48346}{19575017} a^{10} - \frac{704332}{19575017} a^{9} - \frac{4190677}{19575017} a^{8} - \frac{5446724}{19575017} a^{7} - \frac{389090}{2796431} a^{6} - \frac{5820242}{19575017} a^{5} + \frac{6668313}{19575017} a^{4} + \frac{1407158}{19575017} a^{3} - \frac{8408949}{19575017} a^{2} + \frac{160818}{2796431} a + \frac{1174513}{2796431}$, $\frac{1}{137025119} a^{22} - \frac{1}{137025119} a^{21} - \frac{8}{137025119} a^{20} - \frac{31}{137025119} a^{19} + \frac{194}{137025119} a^{18} - \frac{25279}{137025119} a^{17} - \frac{8713}{19575017} a^{16} + \frac{177930}{137025119} a^{15} + \frac{78808}{19575017} a^{14} - \frac{409692}{19575017} a^{13} - \frac{5538872}{137025119} a^{12} - \frac{231780}{19575017} a^{11} - \frac{697105}{19575017} a^{10} + \frac{3636056}{137025119} a^{9} + \frac{1734307}{19575017} a^{8} + \frac{337251}{12456829} a^{7} + \frac{37476437}{137025119} a^{6} + \frac{11927511}{137025119} a^{5} + \frac{21711714}{137025119} a^{4} - \frac{6978602}{137025119} a^{3} + \frac{12656002}{137025119} a^{2} + \frac{4576122}{19575017} a + \frac{199493}{2796431}$, $\frac{1}{10550934163} a^{23} + \frac{6}{10550934163} a^{22} + \frac{41}{10550934163} a^{21} - \frac{241}{10550934163} a^{20} - \frac{1703}{10550934163} a^{19} + \frac{22097}{10550934163} a^{18} - \frac{495797}{1507276309} a^{17} + \frac{1043701}{959175833} a^{16} + \frac{4185585}{1507276309} a^{15} + \frac{257767}{1507276309} a^{14} - \frac{101399728}{10550934163} a^{13} - \frac{1241052}{30760741} a^{12} + \frac{62219961}{1507276309} a^{11} - \frac{412512565}{10550934163} a^{10} - \frac{24015449}{1507276309} a^{9} + \frac{3593856769}{10550934163} a^{8} + \frac{3599016587}{10550934163} a^{7} + \frac{3982767923}{10550934163} a^{6} + \frac{2032713931}{10550934163} a^{5} - \frac{5243289577}{10550934163} a^{4} - \frac{1037203711}{10550934163} a^{3} - \frac{110502046}{1507276309} a^{2} + \frac{28807937}{215325187} a - \frac{3668446}{30760741}$
Class group and class number
$C_{52}$, which has order $52$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{2879221}{10550934163} a^{23} - \frac{1034794}{10550934163} a^{22} + \frac{6208764}{10550934163} a^{21} - \frac{24835056}{10550934163} a^{20} + \frac{1552191}{10550934163} a^{19} - \frac{123440243}{10550934163} a^{18} - \frac{52257097}{1507276309} a^{17} + \frac{48117921}{959175833} a^{16} - \frac{73470374}{1507276309} a^{15} - \frac{486353180}{1507276309} a^{14} - \frac{6007987014}{10550934163} a^{13} - \frac{1194152276}{1507276309} a^{12} - \frac{1493207742}{1507276309} a^{11} - \frac{13465256925}{10550934163} a^{10} - \frac{2341738822}{1507276309} a^{9} - \frac{16622448743}{10550934163} a^{8} - \frac{15061426670}{10550934163} a^{7} + \frac{12340435847}{10550934163} a^{6} + \frac{17460079162}{10550934163} a^{5} - \frac{1967660791}{10550934163} a^{4} - \frac{3929642378}{10550934163} a^{3} + \frac{179019362}{215325187} a^{2} - \frac{26387247}{30760741} a - \frac{3621779}{30760741} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 694660924.0250753 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{12}$ (as 24T2):
| An abelian group of order 24 |
| The 24 conjugacy class representatives for $C_2\times C_{12}$ |
| Character table for $C_2\times C_{12}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/3.12.0.1}{12} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/11.1.0.1}{1} }^{24}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }^{2}$ | R | ${\href{/LocalNumberField/23.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.12.9.2 | $x^{12} - 10 x^{8} + 25 x^{4} - 500$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
| 5.12.9.2 | $x^{12} - 10 x^{8} + 25 x^{4} - 500$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ | |
| $19$ | 19.12.10.1 | $x^{12} - 171 x^{6} + 23104$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |
| 19.12.10.1 | $x^{12} - 171 x^{6} + 23104$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |