Normalized defining polynomial
\( x^{24} - 22 x^{21} + 25 x^{18} - 10306 x^{15} + 212961 x^{12} + 48088 x^{9} + 7144 x^{6} + 832 x^{3} + 64 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(142764915949024053774865343014036832256=2^{36}\cdot 3^{36}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(504=2^{3}\cdot 3^{2}\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{504}(1,·)$, $\chi_{504}(323,·)$, $\chi_{504}(211,·)$, $\chi_{504}(449,·)$, $\chi_{504}(265,·)$, $\chi_{504}(139,·)$, $\chi_{504}(209,·)$, $\chi_{504}(83,·)$, $\chi_{504}(251,·)$, $\chi_{504}(281,·)$, $\chi_{504}(155,·)$, $\chi_{504}(491,·)$, $\chi_{504}(97,·)$, $\chi_{504}(419,·)$, $\chi_{504}(113,·)$, $\chi_{504}(337,·)$, $\chi_{504}(41,·)$, $\chi_{504}(43,·)$, $\chi_{504}(433,·)$, $\chi_{504}(307,·)$, $\chi_{504}(169,·)$, $\chi_{504}(377,·)$, $\chi_{504}(379,·)$, $\chi_{504}(475,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{16} - \frac{1}{2} a^{13} + \frac{1}{4} a^{10} - \frac{1}{2} a^{7} + \frac{1}{4} a^{4}$, $\frac{1}{4} a^{17} + \frac{1}{4} a^{11} + \frac{1}{4} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{77720} a^{18} + \frac{647}{38860} a^{15} - \frac{28927}{77720} a^{12} - \frac{19311}{38860} a^{9} + \frac{1281}{77720} a^{6} - \frac{2131}{19430} a^{3} - \frac{1112}{9715}$, $\frac{1}{77720} a^{19} + \frac{647}{38860} a^{16} - \frac{28927}{77720} a^{13} - \frac{19311}{38860} a^{10} + \frac{1281}{77720} a^{7} - \frac{2131}{19430} a^{4} - \frac{1112}{9715} a$, $\frac{1}{155440} a^{20} + \frac{647}{77720} a^{17} - \frac{28927}{155440} a^{14} - \frac{19311}{77720} a^{11} - \frac{76439}{155440} a^{8} + \frac{17299}{38860} a^{5} + \frac{8603}{19430} a^{2}$, $\frac{1}{890826343575920} a^{21} - \frac{293978439}{89082634357592} a^{18} + \frac{166244692795097}{890826343575920} a^{15} + \frac{183874441564103}{445413171787960} a^{12} + \frac{264076791335009}{890826343575920} a^{9} + \frac{48009869551819}{111353292946990} a^{6} - \frac{3563514636893}{22270658589398} a^{3} + \frac{1005195594934}{55676646473495}$, $\frac{1}{1781652687151840} a^{22} - \frac{293978439}{178165268715184} a^{19} + \frac{166244692795097}{1781652687151840} a^{16} + \frac{183874441564103}{890826343575920} a^{13} + \frac{264076791335009}{1781652687151840} a^{10} - \frac{63343423395171}{222706585893980} a^{7} + \frac{18707143952505}{44541317178796} a^{4} + \frac{502597797467}{55676646473495} a$, $\frac{1}{1781652687151840} a^{23} - \frac{293978439}{178165268715184} a^{20} + \frac{166244692795097}{1781652687151840} a^{17} + \frac{183874441564103}{890826343575920} a^{14} + \frac{264076791335009}{1781652687151840} a^{11} - \frac{63343423395171}{222706585893980} a^{8} + \frac{18707143952505}{44541317178796} a^{5} + \frac{502597797467}{55676646473495} a^{2}$
Class group and class number
$C_{39}$, which has order $39$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{203320941819}{44541317178796} a^{22} + \frac{11221467104953}{111353292946990} a^{19} - \frac{13567418416093}{111353292946990} a^{16} + \frac{2619834157791652}{55676646473495} a^{13} - \frac{108648785957408681}{111353292946990} a^{10} - \frac{16116020821326977}{111353292946990} a^{7} - \frac{6127000972812919}{222706585893980} a^{4} - \frac{71786110120884}{55676646473495} a \) (order $18$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 221439677.80749813 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_6$ (as 24T3):
| An abelian group of order 24 |
| The 24 conjugacy class representatives for $C_2^2\times C_6$ |
| Character table for $C_2^2\times C_6$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{4}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{8}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.18.15 | $x^{12} - 16 x^{10} + 24 x^{6} + 64 x^{4} + 64$ | $2$ | $6$ | $18$ | $C_6\times C_2$ | $[3]^{6}$ |
| 2.12.18.15 | $x^{12} - 16 x^{10} + 24 x^{6} + 64 x^{4} + 64$ | $2$ | $6$ | $18$ | $C_6\times C_2$ | $[3]^{6}$ | |
| $3$ | 3.12.18.82 | $x^{12} - 9 x^{9} + 9 x^{8} - 9 x^{5} - 9 x^{4} - 9 x^{3} + 9$ | $6$ | $2$ | $18$ | $C_6\times C_2$ | $[2]_{2}^{2}$ |
| 3.12.18.82 | $x^{12} - 9 x^{9} + 9 x^{8} - 9 x^{5} - 9 x^{4} - 9 x^{3} + 9$ | $6$ | $2$ | $18$ | $C_6\times C_2$ | $[2]_{2}^{2}$ | |
| $7$ | 7.12.6.1 | $x^{12} + 294 x^{8} + 3430 x^{6} + 21609 x^{4} + 487403 x^{2} + 2941225$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| 7.12.6.1 | $x^{12} + 294 x^{8} + 3430 x^{6} + 21609 x^{4} + 487403 x^{2} + 2941225$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |