Normalized defining polynomial
\( x^{24} - 34 x^{21} + 993 x^{18} - 13006 x^{15} + 105407 x^{12} + 293680 x^{9} + 434872 x^{6} - 10176 x^{3} + 64 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(142764915949024053774865343014036832256=2^{36}\cdot 3^{36}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(504=2^{3}\cdot 3^{2}\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{504}(1,·)$, $\chi_{504}(197,·)$, $\chi_{504}(449,·)$, $\chi_{504}(265,·)$, $\chi_{504}(13,·)$, $\chi_{504}(461,·)$, $\chi_{504}(209,·)$, $\chi_{504}(85,·)$, $\chi_{504}(281,·)$, $\chi_{504}(29,·)$, $\chi_{504}(421,·)$, $\chi_{504}(97,·)$, $\chi_{504}(113,·)$, $\chi_{504}(293,·)$, $\chi_{504}(337,·)$, $\chi_{504}(169,·)$, $\chi_{504}(125,·)$, $\chi_{504}(365,·)$, $\chi_{504}(349,·)$, $\chi_{504}(433,·)$, $\chi_{504}(181,·)$, $\chi_{504}(41,·)$, $\chi_{504}(377,·)$, $\chi_{504}(253,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{16} - \frac{1}{2} a^{13} + \frac{1}{4} a^{10} - \frac{1}{2} a^{7} - \frac{1}{4} a^{4}$, $\frac{1}{4} a^{17} + \frac{1}{4} a^{11} - \frac{1}{4} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{504} a^{18} + \frac{17}{84} a^{15} - \frac{25}{72} a^{12} + \frac{41}{252} a^{9} + \frac{247}{504} a^{6} + \frac{23}{63} a^{3} - \frac{19}{63}$, $\frac{1}{504} a^{19} - \frac{1}{21} a^{16} + \frac{11}{72} a^{13} - \frac{11}{126} a^{10} - \frac{5}{504} a^{7} - \frac{97}{252} a^{4} - \frac{19}{63} a$, $\frac{1}{1008} a^{20} + \frac{17}{168} a^{17} - \frac{25}{144} a^{14} - \frac{211}{504} a^{11} - \frac{257}{1008} a^{8} + \frac{23}{126} a^{5} - \frac{19}{126} a^{2}$, $\frac{1}{458375514617492909136} a^{21} - \frac{18473275848008579}{114593878654373227284} a^{18} + \frac{34238716911221299469}{458375514617492909136} a^{15} + \frac{64194559534154243}{1005209461880466906} a^{12} - \frac{482113786995877933}{458375514617492909136} a^{9} - \frac{54126367884111913307}{229187757308746454568} a^{6} - \frac{11831811001614823801}{28648469663593306821} a^{3} - \frac{8055811426797356861}{28648469663593306821}$, $\frac{1}{916751029234985818272} a^{22} + \frac{417791062011813109}{458375514617492909136} a^{19} - \frac{102182567201127780631}{916751029234985818272} a^{16} + \frac{8644475499140175013}{24125027085131205744} a^{13} - \frac{51697634149219389571}{305583676411661939424} a^{10} + \frac{9698970450287027107}{76395919102915484856} a^{7} - \frac{3488240159584751349}{12732653183819247476} a^{4} - \frac{8347913043623065967}{28648469663593306821} a$, $\frac{1}{916751029234985818272} a^{23} - \frac{18473275848008579}{229187757308746454568} a^{20} + \frac{34238716911221299469}{916751029234985818272} a^{17} + \frac{64194559534154243}{2010418923760933812} a^{14} + \frac{457893400830497031203}{916751029234985818272} a^{11} - \frac{54126367884111913307}{458375514617492909136} a^{8} + \frac{8408329330989241510}{28648469663593306821} a^{5} - \frac{8055811426797356861}{57296939327186613642} a^{2}$
Class group and class number
$C_{3}\times C_{6}$, which has order $18$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{20688780229076371}{1723216220366514696} a^{23} + \frac{9844153577373316819}{24125027085131205744} a^{20} - \frac{35936192399599479791}{3015628385641400718} a^{17} + \frac{179210477883886484695}{1148810813577676464} a^{14} - \frac{3810288983946377891753}{3015628385641400718} a^{11} - \frac{85451321576773344915607}{24125027085131205744} a^{8} - \frac{7941232678616854547446}{1507814192820700359} a^{5} + \frac{82368160836748013236}{1507814192820700359} a^{2} \) (order $18$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 513325248.7446666 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_6$ (as 24T3):
| An abelian group of order 24 |
| The 24 conjugacy class representatives for $C_2^2\times C_6$ |
| Character table for $C_2^2\times C_6$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{4}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.18.23 | $x^{12} + 52 x^{10} - 28 x^{8} + 8 x^{6} + 64 x^{4} - 32 x^{2} + 64$ | $2$ | $6$ | $18$ | $C_6\times C_2$ | $[3]^{6}$ |
| 2.12.18.23 | $x^{12} + 52 x^{10} - 28 x^{8} + 8 x^{6} + 64 x^{4} - 32 x^{2} + 64$ | $2$ | $6$ | $18$ | $C_6\times C_2$ | $[3]^{6}$ | |
| $3$ | 3.12.18.82 | $x^{12} - 9 x^{9} + 9 x^{8} - 9 x^{5} - 9 x^{4} - 9 x^{3} + 9$ | $6$ | $2$ | $18$ | $C_6\times C_2$ | $[2]_{2}^{2}$ |
| 3.12.18.82 | $x^{12} - 9 x^{9} + 9 x^{8} - 9 x^{5} - 9 x^{4} - 9 x^{3} + 9$ | $6$ | $2$ | $18$ | $C_6\times C_2$ | $[2]_{2}^{2}$ | |
| $7$ | 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |