Normalized defining polynomial
\( x^{24} - x^{23} - 16 x^{22} + 3 x^{21} + 149 x^{20} + 37 x^{19} - 1193 x^{18} - 69 x^{17} + 7413 x^{16} + 720 x^{15} - 31749 x^{14} - 13113 x^{13} + 108739 x^{12} + 26266 x^{11} - 278496 x^{10} + 31368 x^{9} + 472592 x^{8} + 29088 x^{7} - 422464 x^{6} - 248960 x^{5} + 287488 x^{4} + 71680 x^{3} - 27648 x^{2} + 6144 x + 4096 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(139797235388174693456489443830128457441=3^{12}\cdot 7^{12}\cdot 13^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(273=3\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{273}(64,·)$, $\chi_{273}(1,·)$, $\chi_{273}(134,·)$, $\chi_{273}(139,·)$, $\chi_{273}(272,·)$, $\chi_{273}(209,·)$, $\chi_{273}(146,·)$, $\chi_{273}(211,·)$, $\chi_{273}(22,·)$, $\chi_{273}(218,·)$, $\chi_{273}(155,·)$, $\chi_{273}(92,·)$, $\chi_{273}(29,·)$, $\chi_{273}(160,·)$, $\chi_{273}(230,·)$, $\chi_{273}(43,·)$, $\chi_{273}(113,·)$, $\chi_{273}(244,·)$, $\chi_{273}(181,·)$, $\chi_{273}(118,·)$, $\chi_{273}(55,·)$, $\chi_{273}(251,·)$, $\chi_{273}(62,·)$, $\chi_{273}(127,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{11} + \frac{1}{4} a^{10} + \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{14} + \frac{3}{8} a^{12} - \frac{3}{8} a^{11} - \frac{3}{8} a^{10} - \frac{1}{8} a^{9} + \frac{3}{8} a^{8} - \frac{3}{8} a^{7} + \frac{3}{8} a^{5} - \frac{1}{8} a^{4} + \frac{3}{8} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{80} a^{16} - \frac{3}{80} a^{15} + \frac{1}{40} a^{14} - \frac{1}{16} a^{13} - \frac{9}{80} a^{12} + \frac{27}{80} a^{11} - \frac{11}{80} a^{10} - \frac{11}{80} a^{9} - \frac{5}{16} a^{8} - \frac{9}{40} a^{7} + \frac{19}{80} a^{6} + \frac{9}{80} a^{5} - \frac{11}{80} a^{4} - \frac{1}{4} a^{3} - \frac{7}{20} a^{2} - \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{160} a^{17} - \frac{1}{160} a^{16} - \frac{1}{40} a^{15} - \frac{1}{160} a^{14} - \frac{19}{160} a^{13} + \frac{9}{160} a^{12} + \frac{43}{160} a^{11} - \frac{33}{160} a^{10} - \frac{47}{160} a^{9} + \frac{3}{40} a^{8} - \frac{17}{160} a^{7} + \frac{47}{160} a^{6} + \frac{7}{160} a^{5} + \frac{19}{80} a^{4} - \frac{17}{40} a^{3} - \frac{9}{20} a^{2} + \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{320} a^{18} - \frac{1}{320} a^{17} - \frac{13}{320} a^{15} - \frac{11}{320} a^{14} - \frac{11}{320} a^{13} - \frac{153}{320} a^{12} - \frac{17}{64} a^{11} + \frac{69}{320} a^{10} - \frac{1}{10} a^{9} + \frac{43}{320} a^{8} - \frac{5}{64} a^{7} + \frac{83}{320} a^{6} + \frac{37}{160} a^{5} + \frac{3}{20} a^{4} + \frac{1}{40} a^{3} - \frac{1}{4} a^{2} - \frac{3}{10} a - \frac{1}{5}$, $\frac{1}{640} a^{19} - \frac{1}{640} a^{18} + \frac{3}{640} a^{16} + \frac{21}{640} a^{15} - \frac{59}{640} a^{14} + \frac{87}{640} a^{13} + \frac{11}{640} a^{12} + \frac{261}{640} a^{11} + \frac{3}{10} a^{10} + \frac{107}{640} a^{9} - \frac{37}{128} a^{8} + \frac{39}{128} a^{7} + \frac{29}{320} a^{6} + \frac{7}{40} a^{5} + \frac{9}{80} a^{4} - \frac{1}{4} a^{3} - \frac{1}{10} a^{2} - \frac{1}{2} a - \frac{2}{5}$, $\frac{1}{6400} a^{20} + \frac{3}{6400} a^{19} - \frac{1}{6400} a^{17} - \frac{3}{1280} a^{16} - \frac{363}{6400} a^{15} + \frac{191}{6400} a^{14} - \frac{29}{256} a^{13} - \frac{7}{1280} a^{12} - \frac{11}{80} a^{11} + \frac{2479}{6400} a^{10} + \frac{1123}{6400} a^{9} + \frac{1307}{6400} a^{8} - \frac{1359}{3200} a^{7} - \frac{219}{1600} a^{6} + \frac{27}{200} a^{5} - \frac{37}{400} a^{4} + \frac{11}{50} a^{3} + \frac{21}{50} a^{2} - \frac{7}{25} a - \frac{7}{25}$, $\frac{1}{12800} a^{21} - \frac{1}{12800} a^{20} + \frac{1}{1600} a^{19} + \frac{19}{12800} a^{18} + \frac{29}{12800} a^{17} - \frac{3}{12800} a^{16} + \frac{263}{12800} a^{15} + \frac{651}{12800} a^{14} - \frac{431}{2560} a^{13} - \frac{3}{16} a^{12} + \frac{3899}{12800} a^{11} + \frac{1247}{12800} a^{10} - \frac{1}{2560} a^{9} - \frac{483}{6400} a^{8} - \frac{239}{800} a^{7} - \frac{29}{100} a^{6} + \frac{287}{800} a^{5} - \frac{23}{100} a^{4} - \frac{13}{100} a^{3} + \frac{27}{100} a^{2} + \frac{21}{50} a + \frac{9}{25}$, $\frac{1}{59758634757145600} a^{22} + \frac{489422961131}{59758634757145600} a^{21} + \frac{1018996242523}{14939658689286400} a^{20} - \frac{41249577734357}{59758634757145600} a^{19} + \frac{27955576350537}{59758634757145600} a^{18} - \frac{42633927541031}{59758634757145600} a^{17} + \frac{251753311897867}{59758634757145600} a^{16} + \frac{2006231179074119}{59758634757145600} a^{15} - \frac{4920195799426527}{59758634757145600} a^{14} + \frac{402258550149337}{2987931737857280} a^{13} - \frac{24763238052498221}{59758634757145600} a^{12} - \frac{13882998721941}{76125649372160} a^{11} + \frac{17801384976218383}{59758634757145600} a^{10} - \frac{2269459209209789}{29879317378572800} a^{9} + \frac{81609607427289}{933728668080400} a^{8} - \frac{570818768191651}{7469829344643200} a^{7} - \frac{1831711739333393}{3734914672321600} a^{6} - \frac{124155345147379}{933728668080400} a^{5} + \frac{230430450994187}{466864334040200} a^{4} + \frac{10107038075913}{116716083510050} a^{3} + \frac{51177401281751}{233432167020100} a^{2} - \frac{13523094509021}{116716083510050} a + \frac{5279071361136}{58358041755025}$, $\frac{1}{119092776744270485578340669586526361600} a^{23} + \frac{489962605301564149719}{119092776744270485578340669586526361600} a^{22} + \frac{112008982118654881311514312583003}{3721649273258452674323145924578948800} a^{21} + \frac{8069961062585462006341751052804651}{119092776744270485578340669586526361600} a^{20} + \frac{68182672594609319017687393754606013}{119092776744270485578340669586526361600} a^{19} + \frac{153539882530487174263702456864136069}{119092776744270485578340669586526361600} a^{18} - \frac{49913339228142260580391561843855237}{23818555348854097115668133917305272320} a^{17} - \frac{614775944896550365288248419212264213}{119092776744270485578340669586526361600} a^{16} + \frac{1035416015118415191142682957351111509}{119092776744270485578340669586526361600} a^{15} - \frac{398818572263485985337243005120668061}{3721649273258452674323145924578948800} a^{14} + \frac{8968943006048630989404965780756790019}{119092776744270485578340669586526361600} a^{13} - \frac{47947326061364641285399774569954519793}{119092776744270485578340669586526361600} a^{12} - \frac{4097949676887847354047590353366538573}{119092776744270485578340669586526361600} a^{11} + \frac{263935134158157816569512477773442849}{11909277674427048557834066958652636160} a^{10} - \frac{3226551234204289709766999804530325803}{14886597093033810697292583698315795200} a^{9} - \frac{398611600837481755726959115791106981}{2977319418606762139458516739663159040} a^{8} + \frac{57559497640165887597378235784256373}{186082463662922633716157296228947440} a^{7} + \frac{130445146789849020021355794750101909}{744329854651690534864629184915789760} a^{6} + \frac{44506470167562617053767271890420537}{465206159157306584290393240572368600} a^{5} - \frac{431983849251028724037618686258024847}{930412318314613168580786481144737200} a^{4} + \frac{25810102568740182804329232609394353}{58150769894663323036299155071546075} a^{3} + \frac{1551716423608338506395640858576743}{232603079578653292145196620286184300} a^{2} - \frac{27085737437295542487711913095325109}{58150769894663323036299155071546075} a + \frac{22110522317637738720722230885852028}{58150769894663323036299155071546075}$
Class group and class number
$C_{14}$, which has order $14$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{207874974968377265534886033}{2190693918619310524521103283200} a^{23} + \frac{167608973605034312026738339}{1095346959309655262260551641600} a^{22} + \frac{3183051578919232015283958967}{2190693918619310524521103283200} a^{21} - \frac{524176514566806739523053831}{438138783723862104904220656640} a^{20} - \frac{607213327493149588327661001}{43813878372386210490422065664} a^{19} + \frac{1357090145038689228557646141}{273836739827413815565137910400} a^{18} + \frac{125176860764040579738729762921}{1095346959309655262260551641600} a^{17} - \frac{8423459516653161363869960721}{136918369913706907782568955200} a^{16} - \frac{764745633312903284205992653703}{1095346959309655262260551641600} a^{15} + \frac{768897502892836052123091777169}{2190693918619310524521103283200} a^{14} + \frac{6569307593907132624892841912853}{2190693918619310524521103283200} a^{13} - \frac{291724752366557406165107240089}{547673479654827631130275820800} a^{12} - \frac{5932052789597109499967988671079}{547673479654827631130275820800} a^{11} + \frac{7938925101848231402890274076557}{2190693918619310524521103283200} a^{10} + \frac{29552644677020112902897963354093}{1095346959309655262260551641600} a^{9} - \frac{10070328483141517710344642960851}{547673479654827631130275820800} a^{8} - \frac{2783952040669454041991380603867}{68459184956853453891284477600} a^{7} + \frac{757601679668844490869366557603}{34229592478426726945642238800} a^{6} + \frac{658060463215939011065006281437}{17114796239213363472821119400} a^{5} + \frac{86699588936858184831953876793}{34229592478426726945642238800} a^{4} - \frac{642525541282004911087203327631}{17114796239213363472821119400} a^{3} + \frac{84983576815621720539857131921}{8557398119606681736410559700} a^{2} + \frac{2078700045498864500883984031}{855739811960668173641055970} a - \frac{2192097276609451198411577472}{2139349529901670434102639925} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 327649563.99093217 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_6$ (as 24T3):
| An abelian group of order 24 |
| The 24 conjugacy class representatives for $C_2^2\times C_6$ |
| Character table for $C_2^2\times C_6$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{4}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{12}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{4}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $7$ | 7.12.6.1 | $x^{12} + 294 x^{8} + 3430 x^{6} + 21609 x^{4} + 487403 x^{2} + 2941225$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| 7.12.6.1 | $x^{12} + 294 x^{8} + 3430 x^{6} + 21609 x^{4} + 487403 x^{2} + 2941225$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $13$ | 13.12.10.1 | $x^{12} - 117 x^{6} + 10816$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |
| 13.12.10.1 | $x^{12} - 117 x^{6} + 10816$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |