/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^24 - 2*x^23 + 2*x^22 + 10*x^21 - 20*x^20 + 13*x^19 + 57*x^18 - 98*x^17 + 19*x^16 + 228*x^15 - 267*x^14 - 159*x^13 + 711*x^12 - 318*x^11 - 1068*x^10 + 1824*x^9 + 304*x^8 - 3136*x^7 + 3648*x^6 + 1664*x^5 - 5120*x^4 + 5120*x^3 + 2048*x^2 - 4096*x + 4096, 24, 135, [0, 12], 138359014736314946502328332753681, [3, 7, 239], [1, a, a^2, a^3, a^4, a^5, a^6, a^7, a^8, 1/2*a^9 - 1/2*a^7 - 1/2*a^4 - 1/2*a^2 - 1/2*a, 1/2*a^10 - 1/2*a^8 - 1/2*a^5 - 1/2*a^3 - 1/2*a^2, 1/2*a^11 - 1/2*a^7 - 1/2*a^6 - 1/2*a^3 - 1/2*a^2 - 1/2*a, 1/4*a^12 - 1/4*a^11 - 1/4*a^9 - 1/4*a^8 + 1/4*a^7 - 1/4*a^6 + 1/4*a^2 - 1/2*a, 1/4*a^13 - 1/4*a^11 - 1/4*a^10 - 1/2*a^7 - 1/4*a^6 - 1/2*a^4 + 1/4*a^3 + 1/4*a^2, 1/4*a^14 - 1/4*a^9 + 1/4*a^8 - 1/2*a^7 + 1/4*a^6 - 1/2*a^5 + 1/4*a^4 - 1/4*a^3 - 1/4*a^2, 1/8*a^15 - 1/8*a^10 + 1/8*a^9 + 1/4*a^8 + 1/8*a^7 + 1/4*a^6 + 1/8*a^5 - 1/8*a^4 + 3/8*a^3 - 1/2*a^2, 1/16*a^16 - 1/8*a^14 - 1/8*a^13 - 3/16*a^11 + 3/16*a^10 - 1/16*a^8 + 1/8*a^7 + 5/16*a^6 - 5/16*a^5 - 7/16*a^4 - 1/2*a^3, 1/32*a^17 - 1/16*a^15 - 1/16*a^14 - 3/32*a^12 - 5/32*a^11 + 7/32*a^9 - 7/16*a^8 - 11/32*a^7 + 3/32*a^6 - 7/32*a^5 - 1/4*a^3, 1/64*a^18 - 1/32*a^16 - 1/32*a^15 + 5/64*a^13 + 3/64*a^12 - 1/64*a^10 + 5/32*a^9 - 19/64*a^8 - 21/64*a^7 + 25/64*a^6 - 3/8*a^4 - 1/8*a^3, 1/128*a^19 - 1/64*a^17 - 1/64*a^16 + 5/128*a^14 - 13/128*a^13 - 1/8*a^12 + 31/128*a^11 + 13/64*a^10 + 29/128*a^9 + 59/128*a^8 + 9/128*a^7 + 1/4*a^6 - 3/16*a^5 - 1/16*a^4 + 3/8*a^3 - 1/2*a, 1/512*a^20 - 1/256*a^19 - 1/256*a^18 + 1/256*a^17 + 1/128*a^16 + 5/512*a^15 + 41/512*a^14 + 21/256*a^13 - 33/512*a^12 + 23/128*a^11 - 119/512*a^10 + 33/512*a^9 - 141/512*a^8 - 41/256*a^7 - 3/64*a^6 + 29/64*a^5 - 1/8*a^4 + 1/8*a^2 - 1/2*a - 1/2, 1/1024*a^21 + 1/512*a^19 - 1/512*a^18 - 1/128*a^17 - 3/1024*a^16 + 51/1024*a^15 + 9/256*a^14 + 75/1024*a^13 - 51/512*a^12 + 185/1024*a^11 - 125/1024*a^10 - 227/1024*a^9 + 123/256*a^8 - 29/256*a^7 - 41/128*a^6 + 29/64*a^5 + 7/16*a^4 - 5/16*a^3 + 1/8*a^2 + 1/4*a - 1/2, 1/176128*a^22 + 19/44032*a^21 + 83/88064*a^20 + 39/88064*a^19 - 165/22016*a^18 + 613/176128*a^17 - 2465/176128*a^16 + 127/44032*a^15 + 4927/176128*a^14 - 10685/88064*a^13 - 11763/176128*a^12 - 41249/176128*a^11 + 12293/176128*a^10 + 8171/44032*a^9 - 319/22016*a^8 + 343/1376*a^7 - 5403/11008*a^6 + 2301/5504*a^5 + 155/2752*a^4 - 575/1376*a^3 - 3/172*a^2 + 109/344*a + 45/172, 1/44736512*a^23 + 7/22368256*a^22 - 6745/22368256*a^21 - 17491/22368256*a^20 - 10139/11184128*a^19 + 28789/44736512*a^18 - 656919/44736512*a^17 + 7599/520192*a^16 - 2742105/44736512*a^15 + 789297/11184128*a^14 - 39205/1040384*a^13 - 2106599/44736512*a^12 + 67475/44736512*a^11 - 2905869/22368256*a^10 - 305561/2796032*a^9 - 1375407/2796032*a^8 + 714569/2796032*a^7 - 303565/699008*a^6 + 15273/174752*a^5 + 741/5461*a^4 - 42903/174752*a^3 + 33849/87376*a^2 - 7859/21844*a + 2905/21844], 1, 3, [3], 1, [ (489923)/(44736512)*a^(23) - (831389)/(22368256)*a^(22) + (151605)/(22368256)*a^(21) + (2917971)/(22368256)*a^(20) - (3919615)/(11184128)*a^(19) - (1031425)/(44736512)*a^(18) + (39186535)/(44736512)*a^(17) - (33189959)/(22368256)*a^(16) - (32898683)/(44736512)*a^(15) + (5239301)/(1398016)*a^(14) - (130082829)/(44736512)*a^(13) - (236457753)/(44736512)*a^(12) + (471863437)/(44736512)*a^(11) + (18022431)/(22368256)*a^(10) - (15041351)/(699008)*a^(9) + (26654251)/(1398016)*a^(8) + (50189805)/(2796032)*a^(7) - (19068869)/(349504)*a^(6) + (3359763)/(174752)*a^(5) + (7241099)/(174752)*a^(4) - (14665679)/(174752)*a^(3) + (535345)/(87376)*a^(2) + (208087)/(5461)*a - (1441905)/(21844) , (186711)/(11184128)*a^(23) - (170287)/(5592064)*a^(22) - (20233)/(5592064)*a^(21) + (1024863)/(5592064)*a^(20) - (760543)/(2796032)*a^(19) - (1553669)/(11184128)*a^(18) + (11506911)/(11184128)*a^(17) - (5702975)/(5592064)*a^(16) - (14403443)/(11184128)*a^(15) + (10046929)/(2796032)*a^(14) - (12853773)/(11184128)*a^(13) - (71296945)/(11184128)*a^(12) + (90670289)/(11184128)*a^(11) + (30163259)/(5592064)*a^(10) - (56807143)/(2796032)*a^(9) + (15618205)/(1398016)*a^(8) + (2289589)/(87376)*a^(7) - (7456397)/(174752)*a^(6) + (1182983)/(174752)*a^(5) + (274461)/(5461)*a^(4) - (308375)/(5461)*a^(3) - (25141)/(10922)*a^(2) + (228026)/(5461)*a - (215093)/(5461) , (134005)/(44736512)*a^(23) - (74595)/(2796032)*a^(22) + (261975)/(22368256)*a^(21) + (1084391)/(22368256)*a^(20) - (716937)/(2796032)*a^(19) + (2550249)/(44736512)*a^(18) + (20008239)/(44736512)*a^(17) - (6398457)/(5592064)*a^(16) - (6187765)/(44736512)*a^(15) + (52586189)/(22368256)*a^(14) - (118750039)/(44736512)*a^(13) - (118308993)/(44736512)*a^(12) + (339682453)/(44736512)*a^(11) - (5144979)/(2796032)*a^(10) - (76084771)/(5592064)*a^(9) + (42807823)/(2796032)*a^(8) + (18256447)/(2796032)*a^(7) - (53567841)/(1398016)*a^(6) + (12073355)/(699008)*a^(5) + (6978059)/(349504)*a^(4) - (5437783)/(87376)*a^(3) + (632403)/(87376)*a^(2) + (879567)/(43688)*a - (268431)/(5461) , (730331)/(22368256)*a^(23) - (898407)/(22368256)*a^(22) - (145533)/(11184128)*a^(21) + (486177)/(1398016)*a^(20) - (3940329)/(11184128)*a^(19) - (7376225)/(22368256)*a^(18) + (20614079)/(11184128)*a^(17) - (26629977)/(22368256)*a^(16) - (58612991)/(22368256)*a^(15) + (130991685)/(22368256)*a^(14) - (5638907)/(22368256)*a^(13) - (129615177)/(11184128)*a^(12) + (2928071)/(260096)*a^(11) + (294326813)/(22368256)*a^(10) - (182486611)/(5592064)*a^(9) + (15684997)/(1398016)*a^(8) + (18296691)/(349504)*a^(7) - (83364361)/(1398016)*a^(6) - (395811)/(699008)*a^(5) + (34182889)/(349504)*a^(4) - (11789367)/(174752)*a^(3) - (251985)/(21844)*a^(2) + (3614327)/(43688)*a - (905689)/(21844) , (1244123)/(44736512)*a^(23) - (40555)/(1398016)*a^(22) - (381307)/(22368256)*a^(21) + (6532441)/(22368256)*a^(20) - (333119)/(1398016)*a^(19) - (14609161)/(44736512)*a^(18) + (66264497)/(44736512)*a^(17) - (1889719)/(2796032)*a^(16) - (104380883)/(44736512)*a^(15) + (97469083)/(22368256)*a^(14) + (36027087)/(44736512)*a^(13) - (422791535)/(44736512)*a^(12) + (320543971)/(44736512)*a^(11) + (70623125)/(5592064)*a^(10) - (67532219)/(2796032)*a^(9) + (10725751)/(2796032)*a^(8) + (122469447)/(2796032)*a^(7) - (54431957)/(1398016)*a^(6) - (5834733)/(699008)*a^(5) + (26806009)/(349504)*a^(4) - (201999)/(5461)*a^(3) - (1281385)/(87376)*a^(2) + (2682535)/(43688)*a - (202305)/(10922) , (3273)/(699008)*a^(23) + (109401)/(5592064)*a^(22) - (81515)/(5592064)*a^(21) + (4001)/(174752)*a^(20) + (6535)/(32512)*a^(19) - (370899)/(2796032)*a^(18) - (583183)/(5592064)*a^(17) + (1389861)/(1398016)*a^(16) - (2299375)/(5592064)*a^(15) - (7608131)/(5592064)*a^(14) + (15899645)/(5592064)*a^(13) + (2608877)/(5592064)*a^(12) - (129757)/(21844)*a^(11) + (13154929)/(2796032)*a^(10) + (45791091)/(5592064)*a^(9) - (39453419)/(2796032)*a^(8) + (1193115)/(349504)*a^(7) + (20640611)/(699008)*a^(6) - (1619775)/(87376)*a^(5) - (181437)/(87376)*a^(4) + (4627745)/(87376)*a^(3) - (56667)/(5461)*a^(2) - (105437)/(21844)*a + (230309)/(5461) , (173969)/(22368256)*a^(23) + (643743)/(11184128)*a^(22) - (500975)/(11184128)*a^(21) + (341657)/(11184128)*a^(20) + (3277683)/(5592064)*a^(19) - (8326931)/(22368256)*a^(18) - (9498279)/(22368256)*a^(17) + (32149455)/(11184128)*a^(16) - (22707989)/(22368256)*a^(15) - (23512993)/(5592064)*a^(14) + (181974085)/(22368256)*a^(13) + (45361513)/(22368256)*a^(12) - (396139833)/(22368256)*a^(11) + (142532357)/(11184128)*a^(10) + (140011955)/(5592064)*a^(9) - (117412515)/(2796032)*a^(8) + (8872591)/(1398016)*a^(7) + (60839677)/(699008)*a^(6) - (9660371)/(174752)*a^(5) - (1252459)/(87376)*a^(4) + (6777939)/(43688)*a^(3) - (1320937)/(43688)*a^(2) - (518917)/(21844)*a + (1382985)/(10922) , (349637)/(44736512)*a^(23) + (99737)/(22368256)*a^(22) - (93937)/(22368256)*a^(21) + (1624413)/(22368256)*a^(20) + (560831)/(11184128)*a^(19) - (3890631)/(44736512)*a^(18) + (12620937)/(44736512)*a^(17) + (6830103)/(22368256)*a^(16) - (24684389)/(44736512)*a^(15) + (2116431)/(5592064)*a^(14) + (58754797)/(44736512)*a^(13) - (76200935)/(44736512)*a^(12) - (40602053)/(44736512)*a^(11) + (99709713)/(22368256)*a^(10) - (9122525)/(5592064)*a^(9) - (6482325)/(1398016)*a^(8) + (31550885)/(2796032)*a^(7) + (85029)/(16256)*a^(6) - (2730739)/(349504)*a^(5) + (3285903)/(174752)*a^(4) + (78439)/(4064)*a^(3) - (375391)/(87376)*a^(2) + (358611)/(21844)*a + (463835)/(21844) , (83821)/(11184128)*a^(23) - (15995)/(5592064)*a^(22) - (8479)/(699008)*a^(21) + (439709)/(5592064)*a^(20) - (9869)/(699008)*a^(19) - (1675043)/(11184128)*a^(18) + (4219881)/(11184128)*a^(17) + (27335)/(699008)*a^(16) - (8941991)/(11184128)*a^(15) + (1310763)/(1398016)*a^(14) + (8849851)/(11184128)*a^(13) - (28555619)/(11184128)*a^(12) + (9360573)/(11184128)*a^(11) + (1541543)/(349504)*a^(10) - (29120711)/(5592064)*a^(9) - (2651881)/(1398016)*a^(8) + (18562581)/(1398016)*a^(7) - (4716031)/(699008)*a^(6) - (2417435)/(349504)*a^(5) + (2038403)/(87376)*a^(4) - (563199)/(87376)*a^(3) - (306317)/(43688)*a^(2) + (437321)/(21844)*a - (58325)/(10922) , (1162609)/(44736512)*a^(23) + (296539)/(5592064)*a^(22) - (1655905)/(22368256)*a^(21) + (4422147)/(22368256)*a^(20) + (1671683)/(2796032)*a^(19) - (31383867)/(44736512)*a^(18) + (11822923)/(44736512)*a^(17) + (18263247)/(5592064)*a^(16) - (120945945)/(44736512)*a^(15) - (66019099)/(22368256)*a^(14) + (484184093)/(44736512)*a^(13) - (122101493)/(44736512)*a^(12) - (829338415)/(44736512)*a^(11) + (64890479)/(2796032)*a^(10) + (51238963)/(2796032)*a^(9) - (144115637)/(2796032)*a^(8) + (87974793)/(2796032)*a^(7) + (121566545)/(1398016)*a^(6) - (53327807)/(699008)*a^(5) + (7745131)/(349504)*a^(4) + (1847455)/(10922)*a^(3) - (4271911)/(87376)*a^(2) + (124593)/(43688)*a + (1527021)/(10922) , (129293)/(22368256)*a^(23) - (266221)/(22368256)*a^(22) + (29747)/(11184128)*a^(21) + (41965)/(699008)*a^(20) - (1267039)/(11184128)*a^(19) - (458623)/(22368256)*a^(18) + (3828851)/(11184128)*a^(17) - (10454455)/(22368256)*a^(16) - (7813757)/(22368256)*a^(15) + (29194663)/(22368256)*a^(14) - (17945473)/(22368256)*a^(13) - (23276989)/(11184128)*a^(12) + (38553015)/(11184128)*a^(11) + (22254843)/(22368256)*a^(10) - (10375893)/(1398016)*a^(9) + (17019693)/(2796032)*a^(8) + (2728109)/(349504)*a^(7) - (24416857)/(1398016)*a^(6) + (3998411)/(699008)*a^(5) + (5506827)/(349504)*a^(4) - (4624383)/(174752)*a^(3) + (80)/(127)*a^(2) + (578143)/(43688)*a - (456535)/(21844) ], 9137650.497592166, [[x^2 - x - 5, 1], [x^2 - x + 1, 1], [x^2 - x + 2, 1], [x^3 - x^2 - 2*x + 1, 1], [x^4 - x^3 - x^2 - 2*x + 4, 1], [x^6 - x^5 + 3*x^4 + 5*x^2 - 2*x + 1, 1], [x^6 - 2*x^5 - 10*x^4 + 13*x^3 + 30*x^2 - 11*x - 13, 1], [x^6 - x^5 + 4*x^4 - 3*x^3 + 8*x^2 - 4*x + 8, 1], [x^6 - x^5 - 6*x^4 + 6*x^3 + 8*x^2 - 8*x + 1, 1], [x^6 - 2*x^5 + 32*x^4 - 57*x^3 + 324*x^2 - 424*x + 967, 1], [x^6 - x^5 - 15*x^4 + 12*x^3 + 65*x^2 - 32*x - 71, 1], [x^6 - x^5 + x^4 - x^3 + x^2 - x + 1, 1], [x^12 - 5*x^11 + 20*x^10 - 47*x^9 + 107*x^8 - 146*x^7 + 279*x^6 - 128*x^5 + 631*x^4 + 971*x^3 + 4716*x^2 + 7881*x + 5041, 1], [x^12 - 2*x^11 + 14*x^10 - 20*x^9 + 117*x^8 - 154*x^7 + 540*x^6 - 462*x^5 + 1459*x^4 - 1098*x^3 + 2093*x^2 - 46*x + 1, 1], [x^12 - x^10 + 36*x^8 + 6*x^6 + 344*x^4 + 244*x^2 + 841, 1], [x^12 - x^11 - 3*x^10 + 2*x^9 + 5*x^8 - 11*x^6 + 20*x^4 + 16*x^3 - 48*x^2 - 32*x + 64, 1], [x^12 - 5*x^11 - 8*x^10 + 79*x^9 - 61*x^8 - 356*x^7 + 671*x^6 + 208*x^5 - 1441*x^4 + 1153*x^3 - 86*x^2 - 197*x + 43, 1], [x^12 - 5*x^11 + 9*x^10 - 7*x^9 + 3*x^8 - x^7 - x^6 - 2*x^5 + 12*x^4 - 56*x^3 + 144*x^2 - 160*x + 64, 1], [x^12 - x^11 + x^9 - x^8 + x^6 - x^4 + x^3 - x + 1, 1]]]