Normalized defining polynomial
\( x^{24} - x^{23} - 4 x^{22} + 15 x^{21} - 16 x^{20} + 62 x^{19} + 163 x^{18} - 809 x^{17} + 670 x^{16} + 3344 x^{15} + 2796 x^{14} - 2771 x^{13} - 4594 x^{12} - 11446 x^{11} - 11444 x^{10} + 8739 x^{9} + 34835 x^{8} + 8891 x^{7} - 162 x^{6} - 698 x^{5} - 196 x^{4} - 50 x^{3} + x^{2} + 4 x + 1 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1348990128329918967746280670166015625=3^{12}\cdot 5^{18}\cdot 13^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(195=3\cdot 5\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{195}(1,·)$, $\chi_{195}(131,·)$, $\chi_{195}(68,·)$, $\chi_{195}(133,·)$, $\chi_{195}(74,·)$, $\chi_{195}(139,·)$, $\chi_{195}(14,·)$, $\chi_{195}(79,·)$, $\chi_{195}(16,·)$, $\chi_{195}(146,·)$, $\chi_{195}(22,·)$, $\chi_{195}(152,·)$, $\chi_{195}(92,·)$, $\chi_{195}(29,·)$, $\chi_{195}(94,·)$, $\chi_{195}(107,·)$, $\chi_{195}(172,·)$, $\chi_{195}(157,·)$, $\chi_{195}(113,·)$, $\chi_{195}(178,·)$, $\chi_{195}(53,·)$, $\chi_{195}(118,·)$, $\chi_{195}(61,·)$, $\chi_{195}(191,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{6781} a^{18} + \frac{675}{6781} a^{17} - \frac{1401}{6781} a^{15} - \frac{3116}{6781} a^{14} - \frac{532}{6781} a^{13} + \frac{3385}{6781} a^{12} - \frac{1448}{6781} a^{11} - \frac{578}{6781} a^{10} - \frac{2466}{6781} a^{9} + \frac{2556}{6781} a^{8} + \frac{3162}{6781} a^{7} + \frac{3337}{6781} a^{6} - \frac{588}{6781} a^{5} - \frac{1969}{6781} a^{4} + \frac{1}{6781} a^{3} - \frac{1298}{6781} a - \frac{1401}{6781}$, $\frac{1}{6781} a^{19} - \frac{1298}{6781} a^{17} - \frac{1401}{6781} a^{16} + \frac{658}{6781} a^{14} + \frac{3092}{6781} a^{13} - \frac{1126}{6781} a^{12} + \frac{358}{6781} a^{11} + \frac{1167}{6781} a^{10} - \frac{1020}{6781} a^{9} + \frac{236}{6781} a^{8} - \frac{1779}{6781} a^{7} - \frac{1771}{6781} a^{6} + \frac{1633}{6781} a^{5} - \frac{675}{6781} a^{3} - \frac{1298}{6781} a^{2} + \frac{3116}{6781}$, $\frac{1}{535699} a^{20} - \frac{5}{535699} a^{19} + \frac{243825}{535699} a^{17} + \frac{115501}{535699} a^{16} - \frac{136152}{535699} a^{15} - \frac{240625}{535699} a^{14} + \frac{99817}{535699} a^{13} + \frac{5630}{535699} a^{12} - \frac{164534}{535699} a^{11} + \frac{110869}{535699} a^{10} - \frac{137301}{535699} a^{9} + \frac{222593}{535699} a^{8} - \frac{4667}{535699} a^{7} + \frac{185161}{535699} a^{6} + \frac{83017}{535699} a^{5} - \frac{33}{79} a^{4} - \frac{125464}{535699} a^{3} + \frac{683}{6781} a^{2} - \frac{30}{79} a - \frac{247324}{535699}$, $\frac{1}{47184545236369} a^{21} - \frac{17080124}{47184545236369} a^{20} + \frac{1500080850}{47184545236369} a^{19} - \frac{1414680224}{47184545236369} a^{18} - \frac{1877983318866}{47184545236369} a^{17} - \frac{7007454641359}{47184545236369} a^{16} - \frac{3379018699049}{47184545236369} a^{15} + \frac{7040323998634}{47184545236369} a^{14} - \frac{4027367370299}{47184545236369} a^{13} + \frac{3887941698954}{47184545236369} a^{12} + \frac{13286602800625}{47184545236369} a^{11} - \frac{23009996697831}{47184545236369} a^{10} - \frac{22749799957235}{47184545236369} a^{9} - \frac{5503154423107}{47184545236369} a^{8} + \frac{8677897803958}{47184545236369} a^{7} - \frac{19535957558520}{47184545236369} a^{6} - \frac{1983064517430}{47184545236369} a^{5} + \frac{10595512088738}{47184545236369} a^{4} - \frac{11404493465426}{47184545236369} a^{3} - \frac{10846588671388}{47184545236369} a^{2} - \frac{11873330592484}{47184545236369} a - \frac{2387836934179}{47184545236369}$, $\frac{1}{47184545236369} a^{22} - \frac{33076046}{47184545236369} a^{20} + \frac{372334935}{47184545236369} a^{19} - \frac{2619680}{597272724511} a^{18} + \frac{11004207107753}{47184545236369} a^{17} + \frac{7332756595023}{47184545236369} a^{16} - \frac{22941253632919}{47184545236369} a^{15} + \frac{760943789928}{47184545236369} a^{14} - \frac{7122442825305}{47184545236369} a^{13} - \frac{8561061457225}{47184545236369} a^{12} + \frac{7808099354305}{47184545236369} a^{11} - \frac{11281529368793}{47184545236369} a^{10} - \frac{12651888130908}{47184545236369} a^{9} - \frac{20849388313915}{47184545236369} a^{8} + \frac{3928612349415}{47184545236369} a^{7} + \frac{15741425842458}{47184545236369} a^{6} - \frac{5418135874254}{47184545236369} a^{5} - \frac{1681538238348}{47184545236369} a^{4} - \frac{6454077701611}{47184545236369} a^{3} - \frac{270554649143}{597272724511} a^{2} + \frac{19384762548293}{47184545236369} a + \frac{7060940013033}{47184545236369}$, $\frac{1}{47184545236369} a^{23} - \frac{19998312}{47184545236369} a^{20} - \frac{22417316}{597272724511} a^{19} - \frac{172364210}{47184545236369} a^{18} + \frac{23018114605162}{47184545236369} a^{17} + \frac{174855771762}{597272724511} a^{16} + \frac{21648219442167}{47184545236369} a^{15} + \frac{22172224036193}{47184545236369} a^{14} - \frac{6893582052213}{47184545236369} a^{13} - \frac{7596374724848}{47184545236369} a^{12} - \frac{4217535432354}{47184545236369} a^{11} + \frac{19943358953226}{47184545236369} a^{10} - \frac{20112121712830}{47184545236369} a^{9} + \frac{7114695148}{597272724511} a^{8} + \frac{14206707948609}{47184545236369} a^{7} + \frac{19539348120385}{47184545236369} a^{6} + \frac{154812702830}{597272724511} a^{5} + \frac{4932422499134}{47184545236369} a^{4} - \frac{280990663123}{597272724511} a^{3} + \frac{103429228327}{597272724511} a^{2} + \frac{17904962031941}{47184545236369} a + \frac{30858710583}{597272724511}$
Class group and class number
$C_{4}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{766315375}{1522082104399} a^{23} - \frac{75711959050}{47184545236369} a^{22} + \frac{313852124985}{47184545236369} a^{21} - \frac{376230196510}{47184545236369} a^{20} - \frac{1211416582770}{47184545236369} a^{19} + \frac{3003189954625}{47184545236369} a^{18} - \frac{16723423039085}{47184545236369} a^{17} + \frac{16453220237860}{47184545236369} a^{16} + \frac{63936327861140}{47184545236369} a^{15} - \frac{286037666260465}{47184545236369} a^{14} - \frac{65923812765125}{47184545236369} a^{13} - \frac{80688717621400}{47184545236369} a^{12} - \frac{209958458230150}{47184545236369} a^{11} - \frac{183454674670400}{47184545236369} a^{10} + \frac{1844357238745210}{47184545236369} a^{9} + \frac{659239690934615}{47184545236369} a^{8} + \frac{42332763293135}{47184545236369} a^{7} - \frac{37561837031460}{47184545236369} a^{6} - \frac{13260014722850}{47184545236369} a^{5} - \frac{8388487554590514}{47184545236369} a^{4} - \frac{237680376710}{47184545236369} a^{3} + \frac{213005021635}{47184545236369} a^{2} + \frac{75711959050}{47184545236369} a + \frac{4444629175}{47184545236369} \) (order $30$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 183169998.253836 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{12}$ (as 24T2):
| An abelian group of order 24 |
| The 24 conjugacy class representatives for $C_2\times C_{12}$ |
| Character table for $C_2\times C_{12}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }^{2}$ | R | R | ${\href{/LocalNumberField/7.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{4}$ | R | ${\href{/LocalNumberField/17.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{24}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $13$ | 13.12.8.1 | $x^{12} - 39 x^{9} - 338 x^{6} + 10985 x^{3} + 228488$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |
| 13.12.8.1 | $x^{12} - 39 x^{9} - 338 x^{6} + 10985 x^{3} + 228488$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |