Normalized defining polynomial
\( x^{24} - 6 x^{22} + 32 x^{20} - 168 x^{18} + 880 x^{16} - 4608 x^{14} + 24128 x^{12} - 18432 x^{10} + 14080 x^{8} - 10752 x^{6} + 8192 x^{4} - 6144 x^{2} + 4096 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1338692086804556824969216000000000000=2^{36}\cdot 5^{12}\cdot 7^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(280=2^{3}\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{280}(1,·)$, $\chi_{280}(131,·)$, $\chi_{280}(179,·)$, $\chi_{280}(211,·)$, $\chi_{280}(129,·)$, $\chi_{280}(9,·)$, $\chi_{280}(11,·)$, $\chi_{280}(209,·)$, $\chi_{280}(19,·)$, $\chi_{280}(139,·)$, $\chi_{280}(121,·)$, $\chi_{280}(89,·)$, $\chi_{280}(219,·)$, $\chi_{280}(99,·)$, $\chi_{280}(251,·)$, $\chi_{280}(81,·)$, $\chi_{280}(41,·)$, $\chi_{280}(171,·)$, $\chi_{280}(241,·)$, $\chi_{280}(51,·)$, $\chi_{280}(201,·)$, $\chi_{280}(249,·)$, $\chi_{280}(59,·)$, $\chi_{280}(169,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{16} a^{8}$, $\frac{1}{16} a^{9}$, $\frac{1}{32} a^{10}$, $\frac{1}{32} a^{11}$, $\frac{1}{64} a^{12}$, $\frac{1}{64} a^{13}$, $\frac{1}{48256} a^{14} - \frac{144}{377}$, $\frac{1}{48256} a^{15} - \frac{144}{377} a$, $\frac{1}{96512} a^{16} - \frac{72}{377} a^{2}$, $\frac{1}{96512} a^{17} - \frac{72}{377} a^{3}$, $\frac{1}{193024} a^{18} - \frac{36}{377} a^{4}$, $\frac{1}{193024} a^{19} - \frac{36}{377} a^{5}$, $\frac{1}{386048} a^{20} - \frac{18}{377} a^{6}$, $\frac{1}{386048} a^{21} - \frac{18}{377} a^{7}$, $\frac{1}{772096} a^{22} - \frac{9}{377} a^{8}$, $\frac{1}{772096} a^{23} - \frac{9}{377} a^{9}$
Class group and class number
$C_{3}\times C_{3}$, which has order $9$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{9}{48256} a^{22} + \frac{27}{24128} a^{20} - \frac{9}{1508} a^{18} + \frac{189}{6032} a^{16} - \frac{495}{3016} a^{14} + \frac{55}{64} a^{12} - \frac{9}{2} a^{10} + \frac{1296}{377} a^{8} - \frac{990}{377} a^{6} + \frac{756}{377} a^{4} - \frac{576}{377} a^{2} + \frac{432}{377} \) (order $14$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 69523271.83090398 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_6$ (as 24T3):
| An abelian group of order 24 |
| The 24 conjugacy class representatives for $C_2^2\times C_6$ |
| Character table for $C_2^2\times C_6$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{4}$ | R | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{8}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.18.15 | $x^{12} - 16 x^{10} + 24 x^{6} + 64 x^{4} + 64$ | $2$ | $6$ | $18$ | $C_6\times C_2$ | $[3]^{6}$ |
| 2.12.18.15 | $x^{12} - 16 x^{10} + 24 x^{6} + 64 x^{4} + 64$ | $2$ | $6$ | $18$ | $C_6\times C_2$ | $[3]^{6}$ | |
| $5$ | 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $7$ | 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |
| 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |