Normalized defining polynomial
\( x^{24} - x^{23} + 3 x^{22} - 8 x^{21} + 8 x^{20} - 24 x^{19} + 37 x^{18} - 120 x^{17} + 194 x^{16} - 329 x^{15} + 744 x^{14} - 904 x^{13} + 1633 x^{12} - 2712 x^{11} + 6696 x^{10} - 8883 x^{9} + 15714 x^{8} - 29160 x^{7} + 26973 x^{6} - 52488 x^{5} + 52488 x^{4} - 157464 x^{3} + 177147 x^{2} - 177147 x + 531441 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(133084684332123489494188901166116961=3^{12}\cdot 7^{20}\cdot 11^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(231=3\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{231}(1,·)$, $\chi_{231}(131,·)$, $\chi_{231}(197,·)$, $\chi_{231}(100,·)$, $\chi_{231}(65,·)$, $\chi_{231}(10,·)$, $\chi_{231}(76,·)$, $\chi_{231}(142,·)$, $\chi_{231}(208,·)$, $\chi_{231}(67,·)$, $\chi_{231}(23,·)$, $\chi_{231}(89,·)$, $\chi_{231}(155,·)$, $\chi_{231}(221,·)$, $\chi_{231}(199,·)$, $\chi_{231}(32,·)$, $\chi_{231}(34,·)$, $\chi_{231}(164,·)$, $\chi_{231}(230,·)$, $\chi_{231}(166,·)$, $\chi_{231}(43,·)$, $\chi_{231}(109,·)$, $\chi_{231}(122,·)$, $\chi_{231}(188,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{12} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{117} a^{14} - \frac{1}{9} a^{13} - \frac{1}{3} a^{12} - \frac{2}{9} a^{11} - \frac{1}{9} a^{10} - \frac{1}{3} a^{9} - \frac{2}{9} a^{8} + \frac{10}{39} a^{7} - \frac{1}{9} a^{6} + \frac{4}{9} a^{5} + \frac{1}{3} a^{4} - \frac{1}{9} a^{3} + \frac{4}{9} a^{2} + \frac{1}{3} a - \frac{4}{13}$, $\frac{1}{351} a^{15} - \frac{1}{351} a^{14} + \frac{1}{9} a^{13} + \frac{7}{27} a^{12} + \frac{11}{27} a^{11} + \frac{1}{9} a^{10} - \frac{2}{27} a^{9} + \frac{23}{117} a^{8} - \frac{121}{351} a^{7} + \frac{10}{27} a^{6} - \frac{4}{9} a^{5} + \frac{8}{27} a^{4} + \frac{1}{27} a^{3} - \frac{4}{9} a^{2} - \frac{17}{39} a - \frac{3}{13}$, $\frac{1}{1053} a^{16} - \frac{1}{1053} a^{15} + \frac{1}{351} a^{14} - \frac{11}{81} a^{13} + \frac{11}{81} a^{12} - \frac{11}{27} a^{11} - \frac{20}{81} a^{10} + \frac{140}{351} a^{9} + \frac{113}{1053} a^{8} + \frac{103}{1053} a^{7} - \frac{10}{27} a^{6} - \frac{28}{81} a^{5} + \frac{28}{81} a^{4} - \frac{1}{27} a^{3} + \frac{16}{39} a^{2} - \frac{16}{39} a + \frac{3}{13}$, $\frac{1}{3159} a^{17} - \frac{1}{3159} a^{16} + \frac{1}{1053} a^{15} - \frac{8}{3159} a^{14} + \frac{38}{243} a^{13} - \frac{38}{81} a^{12} + \frac{115}{243} a^{11} - \frac{445}{1053} a^{10} + \frac{1166}{3159} a^{9} - \frac{1301}{3159} a^{8} + \frac{167}{1053} a^{7} + \frac{80}{243} a^{6} - \frac{80}{243} a^{5} - \frac{1}{81} a^{4} - \frac{49}{117} a^{3} + \frac{49}{117} a^{2} - \frac{10}{39} a + \frac{6}{13}$, $\frac{1}{18954} a^{18} + \frac{1}{9477} a^{17} + \frac{1}{18954} a^{15} - \frac{8}{9477} a^{14} - \frac{227}{1458} a^{12} + \frac{526}{1053} a^{11} - \frac{2999}{9477} a^{10} - \frac{317}{1458} a^{9} + \frac{19}{39} a^{8} - \frac{4439}{9477} a^{7} - \frac{83}{1458} a^{6} - \frac{80}{1053} a^{4} + \frac{253}{702} a^{3} - \frac{2}{39} a - \frac{9}{26}$, $\frac{1}{133682562} a^{19} - \frac{638}{66841281} a^{18} + \frac{463}{7426809} a^{17} - \frac{10889}{133682562} a^{16} + \frac{15688}{66841281} a^{15} - \frac{3704}{7426809} a^{14} + \frac{1588741}{10283274} a^{13} + \frac{2135477}{7426809} a^{12} - \frac{33385187}{66841281} a^{11} - \frac{23423669}{133682562} a^{10} - \frac{570436}{7426809} a^{9} - \frac{24266540}{66841281} a^{8} + \frac{30788947}{133682562} a^{7} + \frac{266432}{571293} a^{6} - \frac{376343}{825201} a^{5} + \frac{630407}{1650402} a^{4} - \frac{78964}{275067} a^{3} + \frac{6782}{30563} a^{2} + \frac{9939}{61126} a - \frac{9026}{30563}$, $\frac{1}{401047686} a^{20} - \frac{1}{401047686} a^{19} - \frac{1747}{66841281} a^{18} - \frac{6857}{401047686} a^{17} - \frac{14113}{401047686} a^{16} + \frac{5309}{66841281} a^{15} + \frac{54829}{401047686} a^{14} + \frac{6067175}{133682562} a^{13} + \frac{68094349}{200523843} a^{12} + \frac{152359321}{401047686} a^{11} + \frac{24940817}{133682562} a^{10} + \frac{29282029}{200523843} a^{9} + \frac{12495343}{401047686} a^{8} + \frac{37707425}{133682562} a^{7} - \frac{10934744}{22280427} a^{6} + \frac{2757635}{14853618} a^{5} - \frac{920833}{4951206} a^{4} + \frac{364441}{825201} a^{3} + \frac{25547}{550134} a^{2} - \frac{16877}{61126} a - \frac{8622}{30563}$, $\frac{1}{1203143058} a^{21} - \frac{1}{1203143058} a^{20} + \frac{1}{401047686} a^{19} + \frac{305}{46274733} a^{18} - \frac{103429}{1203143058} a^{17} + \frac{39763}{401047686} a^{16} - \frac{174982}{601571529} a^{15} - \frac{550165}{401047686} a^{14} + \frac{94073027}{1203143058} a^{13} - \frac{2424130}{601571529} a^{12} + \frac{1513691}{30849822} a^{11} + \frac{582544049}{1203143058} a^{10} - \frac{46722778}{601571529} a^{9} - \frac{26025637}{401047686} a^{8} - \frac{4645441}{44560854} a^{7} + \frac{3508952}{22280427} a^{6} - \frac{2444959}{14853618} a^{5} + \frac{61487}{126954} a^{4} - \frac{150613}{825201} a^{3} + \frac{125191}{550134} a^{2} + \frac{79927}{183378} a + \frac{3817}{61126}$, $\frac{1}{3609429174} a^{22} - \frac{1}{3609429174} a^{21} + \frac{1}{1203143058} a^{20} - \frac{4}{1804714587} a^{19} - \frac{33692}{1804714587} a^{18} - \frac{175913}{1203143058} a^{17} + \frac{196484}{1804714587} a^{16} - \frac{620696}{601571529} a^{15} + \frac{6699785}{3609429174} a^{14} - \frac{51563428}{1804714587} a^{13} - \frac{71855759}{601571529} a^{12} + \frac{88239443}{3609429174} a^{11} - \frac{183324175}{1804714587} a^{10} - \frac{140792762}{601571529} a^{9} - \frac{979177}{133682562} a^{8} - \frac{25134913}{66841281} a^{7} - \frac{2781121}{22280427} a^{6} - \frac{62875}{550134} a^{5} - \frac{643358}{2475603} a^{4} - \frac{101704}{275067} a^{3} + \frac{173989}{550134} a^{2} + \frac{67975}{183378} a - \frac{17727}{61126}$, $\frac{1}{10828287522} a^{23} - \frac{1}{10828287522} a^{22} + \frac{1}{3609429174} a^{21} - \frac{4}{5414143761} a^{20} + \frac{4}{5414143761} a^{19} - \frac{42448}{1804714587} a^{18} + \frac{39545}{416472597} a^{17} - \frac{669242}{1804714587} a^{16} + \frac{3417892}{5414143761} a^{15} - \frac{7829503}{5414143761} a^{14} - \frac{133470299}{1804714587} a^{13} + \frac{2474930734}{5414143761} a^{12} - \frac{1780524457}{5414143761} a^{11} + \frac{2108956}{138824199} a^{10} + \frac{55081483}{200523843} a^{9} - \frac{74558275}{200523843} a^{8} - \frac{11001596}{66841281} a^{7} + \frac{3397267}{22280427} a^{6} - \frac{2227603}{7426809} a^{5} + \frac{447100}{2475603} a^{4} + \frac{1373}{7053} a^{3} + \frac{128431}{550134} a^{2} + \frac{57497}{183378} a - \frac{3427}{61126}$
Class group and class number
$C_{9}$, which has order $9$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{2573}{3609429174} a^{23} - \frac{2573}{1203143058} a^{22} + \frac{10292}{1804714587} a^{21} - \frac{10292}{1804714587} a^{20} + \frac{10292}{601571529} a^{19} - \frac{95201}{3609429174} a^{18} + \frac{81499}{1804714587} a^{17} - \frac{249581}{1804714587} a^{16} + \frac{846517}{3609429174} a^{15} - \frac{319052}{601571529} a^{14} + \frac{1162996}{1804714587} a^{13} - \frac{4201709}{3609429174} a^{12} + \frac{1162996}{601571529} a^{11} - \frac{12848555}{1804714587} a^{10} + \frac{846517}{133682562} a^{9} - \frac{249581}{22280427} a^{8} + \frac{51460}{2475603} a^{7} - \frac{95201}{4951206} a^{6} + \frac{10292}{275067} a^{5} - \frac{10292}{275067} a^{4} + \frac{13051}{183378} a^{3} - \frac{7719}{61126} a^{2} + \frac{7719}{61126} a - \frac{23157}{61126} \) (order $42$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 55738390.68907589 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_6$ (as 24T3):
| An abelian group of order 24 |
| The 24 conjugacy class representatives for $C_2^2\times C_6$ |
| Character table for $C_2^2\times C_6$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{4}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{4}$ | R | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $7$ | 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |
| 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |
| $11$ | 11.12.6.1 | $x^{12} + 242 x^{8} + 21296 x^{6} + 14641 x^{4} + 1932612 x^{2} + 113379904$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| 11.12.6.1 | $x^{12} + 242 x^{8} + 21296 x^{6} + 14641 x^{4} + 1932612 x^{2} + 113379904$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |