Normalized defining polynomial
\( x^{24} - x + 1 \)
Invariants
Degree: | $24$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 12]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(1312855308850436212414726439933209\)
\(\medspace = 6361\cdot 61167766669\cdot 3374184647743911301\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(23.98\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Ramified primes: |
\(6361\), \(61167766669\), \(3374184647743911301\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | $\Q(\sqrt{13128\!\cdots\!33209}$) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$
Monogenic: | Yes | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $11$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$a^{23}-1$, $a^{8}+1$, $a^{23}+a^{22}+a^{21}+a^{20}+a^{7}-1$, $a^{23}+a^{22}+a^{21}+a^{20}+a^{19}+a^{18}+a^{17}+a^{16}+a^{15}+a^{14}+a^{12}+a^{10}-1$, $a^{18}+a^{17}+a^{16}+a^{15}+a^{14}-a^{10}+a^{5}-1$, $a^{11}+a^{8}+a^{5}$, $a^{23}+a^{22}+a^{21}+a^{20}-a^{8}+a^{2}-1$, $a^{23}+a^{22}+a^{21}+a^{20}+a^{19}+a^{18}+a^{17}+a^{16}+a^{15}+a^{14}+a^{12}+a^{11}+a^{9}+a^{6}-1$, $2a^{23}+2a^{22}+a^{21}+a^{20}+a^{19}+a^{18}+a^{17}+a^{16}+a^{15}-a^{11}-a^{4}-a-2$, $a^{21}+a^{20}+a^{15}+a^{10}-a^{7}-a^{6}-a+1$, $a^{21}+a^{18}+a^{15}+a^{14}-a^{13}+a^{11}+a^{8}-a^{7}+a^{5}-a^{3}+a^{2}+a-1$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 9163307.175032053 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{12}\cdot 9163307.175032053 \cdot 1}{2\cdot\sqrt{1312855308850436212414726439933209}}\cr\approx \mathstrut & 0.478709711081349 \end{aligned}\] (assuming GRH)
Galois group
A non-solvable group of order 620448401733239439360000 |
The 1575 conjugacy class representatives for $S_{24}$ are not computed |
Character table for $S_{24}$ is not computed |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $21{,}\,{\href{/padicField/2.3.0.1}{3} }$ | $23{,}\,{\href{/padicField/3.1.0.1}{1} }$ | ${\href{/padicField/5.11.0.1}{11} }{,}\,{\href{/padicField/5.9.0.1}{9} }{,}\,{\href{/padicField/5.3.0.1}{3} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ | $23{,}\,{\href{/padicField/7.1.0.1}{1} }$ | ${\href{/padicField/11.9.0.1}{9} }{,}\,{\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.11.0.1}{11} }{,}\,{\href{/padicField/13.9.0.1}{9} }{,}\,{\href{/padicField/13.3.0.1}{3} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.12.0.1}{12} }{,}\,{\href{/padicField/17.8.0.1}{8} }{,}\,{\href{/padicField/17.3.0.1}{3} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ | $18{,}\,{\href{/padicField/19.6.0.1}{6} }$ | ${\href{/padicField/23.3.0.1}{3} }^{8}$ | $18{,}\,{\href{/padicField/29.6.0.1}{6} }$ | $16{,}\,{\href{/padicField/31.7.0.1}{7} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.12.0.1}{12} }^{2}$ | $20{,}\,{\href{/padicField/41.3.0.1}{3} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ | $21{,}\,{\href{/padicField/43.2.0.1}{2} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ | $21{,}\,{\href{/padicField/47.3.0.1}{3} }$ | ${\href{/padicField/53.6.0.1}{6} }^{2}{,}\,{\href{/padicField/53.4.0.1}{4} }^{2}{,}\,{\href{/padicField/53.3.0.1}{3} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ | $18{,}\,{\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{3}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(6361\)
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $20$ | $1$ | $20$ | $0$ | 20T1 | $[\ ]^{20}$ | ||
\(61167766669\)
| $\Q_{61167766669}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{61167766669}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{61167766669}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{61167766669}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $16$ | $1$ | $16$ | $0$ | $C_{16}$ | $[\ ]^{16}$ | ||
\(3374184647743911301\)
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | ||
Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | ||
Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | ||
Deg $7$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |