Normalized defining polynomial
\( x^{24} + 126 x^{20} + 3567 x^{16} + 9016 x^{12} + 5607 x^{8} + 483 x^{4} + 1 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(127338577759142414150270976000000000000=2^{48}\cdot 3^{32}\cdot 5^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(360=2^{3}\cdot 3^{2}\cdot 5\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{360}(1,·)$, $\chi_{360}(259,·)$, $\chi_{360}(199,·)$, $\chi_{360}(139,·)$, $\chi_{360}(109,·)$, $\chi_{360}(271,·)$, $\chi_{360}(19,·)$, $\chi_{360}(151,·)$, $\chi_{360}(331,·)$, $\chi_{360}(79,·)$, $\chi_{360}(349,·)$, $\chi_{360}(31,·)$, $\chi_{360}(289,·)$, $\chi_{360}(91,·)$, $\chi_{360}(229,·)$, $\chi_{360}(241,·)$, $\chi_{360}(169,·)$, $\chi_{360}(301,·)$, $\chi_{360}(49,·)$, $\chi_{360}(211,·)$, $\chi_{360}(181,·)$, $\chi_{360}(121,·)$, $\chi_{360}(61,·)$, $\chi_{360}(319,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{9} a^{12} - \frac{1}{3} a^{4} - \frac{1}{9}$, $\frac{1}{9} a^{13} - \frac{1}{3} a^{5} - \frac{1}{9} a$, $\frac{1}{9} a^{14} - \frac{1}{3} a^{6} - \frac{1}{9} a^{2}$, $\frac{1}{9} a^{15} - \frac{1}{3} a^{7} - \frac{1}{9} a^{3}$, $\frac{1}{477} a^{16} - \frac{23}{477} a^{12} - \frac{10}{159} a^{8} + \frac{32}{477} a^{4} - \frac{229}{477}$, $\frac{1}{477} a^{17} - \frac{23}{477} a^{13} - \frac{10}{159} a^{9} + \frac{32}{477} a^{5} - \frac{229}{477} a$, $\frac{1}{477} a^{18} - \frac{23}{477} a^{14} - \frac{10}{159} a^{10} + \frac{32}{477} a^{6} - \frac{229}{477} a^{2}$, $\frac{1}{477} a^{19} - \frac{23}{477} a^{15} - \frac{10}{159} a^{11} + \frac{32}{477} a^{7} - \frac{229}{477} a^{3}$, $\frac{1}{210415671} a^{20} + \frac{26320}{210415671} a^{16} + \frac{5688997}{210415671} a^{12} + \frac{58299548}{210415671} a^{8} + \frac{46834}{2963601} a^{4} - \frac{7902811}{210415671}$, $\frac{1}{210415671} a^{21} + \frac{26320}{210415671} a^{17} + \frac{5688997}{210415671} a^{13} + \frac{58299548}{210415671} a^{9} + \frac{46834}{2963601} a^{5} - \frac{7902811}{210415671} a$, $\frac{1}{210415671} a^{22} + \frac{26320}{210415671} a^{18} + \frac{5688997}{210415671} a^{14} + \frac{58299548}{210415671} a^{10} + \frac{46834}{2963601} a^{6} - \frac{7902811}{210415671} a^{2}$, $\frac{1}{210415671} a^{23} + \frac{26320}{210415671} a^{19} + \frac{5688997}{210415671} a^{15} + \frac{58299548}{210415671} a^{11} + \frac{46834}{2963601} a^{7} - \frac{7902811}{210415671} a^{3}$
Class group and class number
$C_{3}\times C_{21}$, which has order $63$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{2610308}{11074509} a^{23} + \frac{6205096}{208953} a^{19} + \frac{9307358687}{11074509} a^{15} + \frac{23433189976}{11074509} a^{11} + \frac{202920278}{155979} a^{7} + \frac{1150393573}{11074509} a^{3} \) (order $8$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 81723202.08229 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_6$ (as 24T3):
| An abelian group of order 24 |
| The 24 conjugacy class representatives for $C_2^2\times C_6$ |
| Character table for $C_2^2\times C_6$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{8}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.6.8.3 | $x^{6} + 18 x^{2} + 9$ | $3$ | $2$ | $8$ | $C_6$ | $[2]^{2}$ |
| 3.6.8.3 | $x^{6} + 18 x^{2} + 9$ | $3$ | $2$ | $8$ | $C_6$ | $[2]^{2}$ | |
| 3.6.8.3 | $x^{6} + 18 x^{2} + 9$ | $3$ | $2$ | $8$ | $C_6$ | $[2]^{2}$ | |
| 3.6.8.3 | $x^{6} + 18 x^{2} + 9$ | $3$ | $2$ | $8$ | $C_6$ | $[2]^{2}$ | |
| $5$ | 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |