Properties

Label 24.0.12202562642...0897.1
Degree $24$
Signature $[0, 12]$
Discriminant $3^{12}\cdot 7^{16}\cdot 17^{21}$
Root discriminant $75.61$
Ramified primes $3, 7, 17$
Class number $9506$ (GRH)
Class group $[7, 1358]$ (GRH)
Galois group $C_{24}$ (as 24T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![8245033, -12721577, 16763733, 15518693, 5795470, 7380279, 9361191, -1268874, 5475610, -2062773, 1635343, -582811, 636038, -210769, 29369, 31930, -14334, 6142, -821, -1, 119, -51, 22, -5, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^24 - 5*x^23 + 22*x^22 - 51*x^21 + 119*x^20 - x^19 - 821*x^18 + 6142*x^17 - 14334*x^16 + 31930*x^15 + 29369*x^14 - 210769*x^13 + 636038*x^12 - 582811*x^11 + 1635343*x^10 - 2062773*x^9 + 5475610*x^8 - 1268874*x^7 + 9361191*x^6 + 7380279*x^5 + 5795470*x^4 + 15518693*x^3 + 16763733*x^2 - 12721577*x + 8245033)
 
gp: K = bnfinit(x^24 - 5*x^23 + 22*x^22 - 51*x^21 + 119*x^20 - x^19 - 821*x^18 + 6142*x^17 - 14334*x^16 + 31930*x^15 + 29369*x^14 - 210769*x^13 + 636038*x^12 - 582811*x^11 + 1635343*x^10 - 2062773*x^9 + 5475610*x^8 - 1268874*x^7 + 9361191*x^6 + 7380279*x^5 + 5795470*x^4 + 15518693*x^3 + 16763733*x^2 - 12721577*x + 8245033, 1)
 

Normalized defining polynomial

\( x^{24} - 5 x^{23} + 22 x^{22} - 51 x^{21} + 119 x^{20} - x^{19} - 821 x^{18} + 6142 x^{17} - 14334 x^{16} + 31930 x^{15} + 29369 x^{14} - 210769 x^{13} + 636038 x^{12} - 582811 x^{11} + 1635343 x^{10} - 2062773 x^{9} + 5475610 x^{8} - 1268874 x^{7} + 9361191 x^{6} + 7380279 x^{5} + 5795470 x^{4} + 15518693 x^{3} + 16763733 x^{2} - 12721577 x + 8245033 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $24$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 12]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1220256264249613719359965066902998670022440897=3^{12}\cdot 7^{16}\cdot 17^{21}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $75.61$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 7, 17$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(357=3\cdot 7\cdot 17\)
Dirichlet character group:    $\lbrace$$\chi_{357}(128,·)$, $\chi_{357}(1,·)$, $\chi_{357}(2,·)$, $\chi_{357}(67,·)$, $\chi_{357}(4,·)$, $\chi_{357}(134,·)$, $\chi_{357}(263,·)$, $\chi_{357}(8,·)$, $\chi_{357}(268,·)$, $\chi_{357}(205,·)$, $\chi_{357}(256,·)$, $\chi_{357}(16,·)$, $\chi_{357}(338,·)$, $\chi_{357}(212,·)$, $\chi_{357}(281,·)$, $\chi_{357}(155,·)$, $\chi_{357}(32,·)$, $\chi_{357}(64,·)$, $\chi_{357}(169,·)$, $\chi_{357}(106,·)$, $\chi_{357}(179,·)$, $\chi_{357}(53,·)$, $\chi_{357}(310,·)$, $\chi_{357}(319,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{798953} a^{21} - \frac{195650}{798953} a^{20} - \frac{135856}{798953} a^{19} - \frac{379215}{798953} a^{18} - \frac{258006}{798953} a^{17} - \frac{345083}{798953} a^{16} + \frac{230389}{798953} a^{15} + \frac{90656}{798953} a^{14} - \frac{384702}{798953} a^{13} + \frac{85284}{798953} a^{12} - \frac{22730}{798953} a^{11} - \frac{323968}{798953} a^{10} + \frac{281147}{798953} a^{9} - \frac{303088}{798953} a^{8} + \frac{105509}{798953} a^{7} + \frac{142127}{798953} a^{6} - \frac{256904}{798953} a^{5} + \frac{360679}{798953} a^{4} - \frac{280111}{798953} a^{3} - \frac{23472}{798953} a^{2} - \frac{283905}{798953} a - \frac{218286}{798953}$, $\frac{1}{10386389} a^{22} - \frac{5}{10386389} a^{21} - \frac{4236641}{10386389} a^{20} - \frac{357931}{10386389} a^{19} + \frac{596805}{10386389} a^{18} - \frac{78413}{10386389} a^{17} - \frac{4401505}{10386389} a^{16} + \frac{124082}{798953} a^{15} + \frac{372653}{798953} a^{14} - \frac{369094}{10386389} a^{13} + \frac{3226810}{10386389} a^{12} - \frac{1960326}{10386389} a^{11} - \frac{3893582}{10386389} a^{10} - \frac{62728}{798953} a^{9} - \frac{53544}{10386389} a^{8} - \frac{2495088}{10386389} a^{7} - \frac{2178107}{10386389} a^{6} - \frac{329453}{798953} a^{5} + \frac{217830}{798953} a^{4} + \frac{3438874}{10386389} a^{3} + \frac{3114311}{10386389} a^{2} + \frac{797408}{10386389} a + \frac{2267098}{10386389}$, $\frac{1}{451997728695591943447411849425817581501042398811377809977902971696105780539660528391487} a^{23} + \frac{6553460558531966101698600850762558835243713641327452816607027525729895063461344}{451997728695591943447411849425817581501042398811377809977902971696105780539660528391487} a^{22} - \frac{27647800090705883298828093453349823903811158545691490697914161671301695019583829}{451997728695591943447411849425817581501042398811377809977902971696105780539660528391487} a^{21} + \frac{170909690637559797431901845969860358560975662226947513297051825136698924569677864350004}{451997728695591943447411849425817581501042398811377809977902971696105780539660528391487} a^{20} - \frac{112451133600628136912784392704471501210185986225255382855592294225675208580884540233773}{451997728695591943447411849425817581501042398811377809977902971696105780539660528391487} a^{19} + \frac{223012654296153408016000260914488606125668445809904800268585695299413714821462445393554}{451997728695591943447411849425817581501042398811377809977902971696105780539660528391487} a^{18} - \frac{135977005301853447996125958457093861038072886481475699057843712912022638819395962552448}{451997728695591943447411849425817581501042398811377809977902971696105780539660528391487} a^{17} + \frac{112323381354185296022311216480866028329541862372882482834356102255670546207986501859571}{451997728695591943447411849425817581501042398811377809977902971696105780539660528391487} a^{16} - \frac{10539149291202350845476868499875429501537880205827445890760094657250197361784884014559}{34769056053507072572877834571216737038541722985490600767530997822777367733820040645499} a^{15} - \frac{126488213374648011370644735632959947353771974479732340230046191661694233296124625519746}{451997728695591943447411849425817581501042398811377809977902971696105780539660528391487} a^{14} + \frac{100982699365766322007172789068726371377545915616655921366753478712258120922391946607234}{451997728695591943447411849425817581501042398811377809977902971696105780539660528391487} a^{13} - \frac{6554693327985708298543575067307105926630413669322208751219533205178419263400051770862}{34769056053507072572877834571216737038541722985490600767530997822777367733820040645499} a^{12} - \frac{176586361989118677143493073095322239399926806216607379363907746613742472903226627488425}{451997728695591943447411849425817581501042398811377809977902971696105780539660528391487} a^{11} - \frac{94384917125509114452636608599880505489166026849380304963977565695886939917952405210802}{451997728695591943447411849425817581501042398811377809977902971696105780539660528391487} a^{10} - \frac{5229884140324572203612502731335552891967499702047744639713801444295102984346510980587}{451997728695591943447411849425817581501042398811377809977902971696105780539660528391487} a^{9} - \frac{177526020562560968339631138566581774108076002669953751604808376385377263442948065436025}{451997728695591943447411849425817581501042398811377809977902971696105780539660528391487} a^{8} - \frac{96053171603746308467020131053210917137567697199862963431696497030254510411193097463451}{451997728695591943447411849425817581501042398811377809977902971696105780539660528391487} a^{7} - \frac{43393417677400589023969118561394300620422237400560683121992340515805245619389984450921}{451997728695591943447411849425817581501042398811377809977902971696105780539660528391487} a^{6} + \frac{12773476755091255770122956699155454254479886566153222665747087535492462471961490457261}{34769056053507072572877834571216737038541722985490600767530997822777367733820040645499} a^{5} + \frac{113939492761824665102583160822419871119180268005640778801010259746802504649141300681422}{451997728695591943447411849425817581501042398811377809977902971696105780539660528391487} a^{4} - \frac{220421977847683497296386598274759124846108302028603325347639960117499714716247488995978}{451997728695591943447411849425817581501042398811377809977902971696105780539660528391487} a^{3} + \frac{169935953866028367867120921130992876375608278106765480608597390907261907676477899104427}{451997728695591943447411849425817581501042398811377809977902971696105780539660528391487} a^{2} + \frac{12859781007374154195972135440524199607483435644770751542121118154339248235337654645791}{451997728695591943447411849425817581501042398811377809977902971696105780539660528391487} a + \frac{197208606574941514099983694870418109083950032609884819259776426234956929588831434850810}{451997728695591943447411849425817581501042398811377809977902971696105780539660528391487}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{7}\times C_{1358}$, which has order $9506$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 250243842.68845215 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{24}$ (as 24T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 24
The 24 conjugacy class representatives for $C_{24}$
Character table for $C_{24}$ is not computed

Intermediate fields

\(\Q(\sqrt{17}) \), \(\Q(\zeta_{7})^+\), 4.4.4913.1, 6.6.11796113.1, 8.0.33237432513.1, 12.12.683635509017782097.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.12.0.1}{12} }^{2}$ R $24$ R $24$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{12}$ R ${\href{/LocalNumberField/19.12.0.1}{12} }^{2}$ $24$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{3}$ $24$ $24$ ${\href{/LocalNumberField/41.8.0.1}{8} }^{3}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{6}$ ${\href{/LocalNumberField/47.3.0.1}{3} }^{8}$ ${\href{/LocalNumberField/53.12.0.1}{12} }^{2}$ ${\href{/LocalNumberField/59.12.0.1}{12} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
7Data not computed
17Data not computed