Normalized defining polynomial
\( x^{24} - 21 x^{20} + 343 x^{16} - 1960 x^{12} + 8575 x^{8} - 4802 x^{4} + 2401 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11935913115234869169771450911000887296=2^{48}\cdot 3^{12}\cdot 7^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(168=2^{3}\cdot 3\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{168}(1,·)$, $\chi_{168}(131,·)$, $\chi_{168}(5,·)$, $\chi_{168}(65,·)$, $\chi_{168}(137,·)$, $\chi_{168}(139,·)$, $\chi_{168}(13,·)$, $\chi_{168}(79,·)$, $\chi_{168}(115,·)$, $\chi_{168}(19,·)$, $\chi_{168}(23,·)$, $\chi_{168}(25,·)$, $\chi_{168}(157,·)$, $\chi_{168}(95,·)$, $\chi_{168}(101,·)$, $\chi_{168}(71,·)$, $\chi_{168}(125,·)$, $\chi_{168}(113,·)$, $\chi_{168}(83,·)$, $\chi_{168}(121,·)$, $\chi_{168}(59,·)$, $\chi_{168}(151,·)$, $\chi_{168}(61,·)$, $\chi_{168}(127,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7} a^{6}$, $\frac{1}{7} a^{7}$, $\frac{1}{7} a^{8}$, $\frac{1}{7} a^{9}$, $\frac{1}{7} a^{10}$, $\frac{1}{7} a^{11}$, $\frac{1}{637} a^{12} - \frac{4}{13}$, $\frac{1}{637} a^{13} - \frac{4}{13} a$, $\frac{1}{637} a^{14} - \frac{4}{13} a^{2}$, $\frac{1}{637} a^{15} - \frac{4}{13} a^{3}$, $\frac{1}{4459} a^{16} + \frac{22}{91} a^{4}$, $\frac{1}{4459} a^{17} + \frac{22}{91} a^{5}$, $\frac{1}{4459} a^{18} - \frac{4}{91} a^{6}$, $\frac{1}{4459} a^{19} - \frac{4}{91} a^{7}$, $\frac{1}{57967} a^{20} + \frac{1}{57967} a^{16} + \frac{2}{8281} a^{12} + \frac{48}{1183} a^{8} + \frac{386}{1183} a^{4} - \frac{73}{169}$, $\frac{1}{57967} a^{21} + \frac{1}{57967} a^{17} + \frac{2}{8281} a^{13} + \frac{48}{1183} a^{9} + \frac{386}{1183} a^{5} - \frac{73}{169} a$, $\frac{1}{405769} a^{22} + \frac{2}{57967} a^{18} + \frac{4}{8281} a^{14} + \frac{386}{8281} a^{10} - \frac{73}{1183} a^{6} + \frac{23}{169} a^{2}$, $\frac{1}{405769} a^{23} + \frac{2}{57967} a^{19} + \frac{4}{8281} a^{15} + \frac{386}{8281} a^{11} - \frac{73}{1183} a^{7} + \frac{23}{169} a^{3}$
Class group and class number
$C_{56}$, which has order $56$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{12}{405769} a^{22} + \frac{4}{8281} a^{18} - \frac{61}{8281} a^{14} + \frac{100}{8281} a^{10} - \frac{8}{1183} a^{6} - \frac{224}{169} a^{2} \) (order $12$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 162312869.89332253 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_6$ (as 24T3):
| An abelian group of order 24 |
| The 24 conjugacy class representatives for $C_2^2\times C_6$ |
| Character table for $C_2^2\times C_6$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{4}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/13.1.0.1}{1} }^{24}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $7$ | 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |
| 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |