Properties

Label 24.0.11935913115...7296.7
Degree $24$
Signature $[0, 12]$
Discriminant $2^{48}\cdot 3^{12}\cdot 7^{20}$
Root discriminant $35.06$
Ramified primes $2, 3, 7$
Class number $84$ (GRH)
Class group $[2, 42]$ (GRH)
Galois group $C_2^2\times C_6$ (as 24T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 24, 0, 490, 0, 1856, 0, 4847, 0, 6412, 0, 5972, 0, 3472, 0, 1475, 0, 428, 0, 91, 0, 12, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^24 + 12*x^22 + 91*x^20 + 428*x^18 + 1475*x^16 + 3472*x^14 + 5972*x^12 + 6412*x^10 + 4847*x^8 + 1856*x^6 + 490*x^4 + 24*x^2 + 1)
 
gp: K = bnfinit(x^24 + 12*x^22 + 91*x^20 + 428*x^18 + 1475*x^16 + 3472*x^14 + 5972*x^12 + 6412*x^10 + 4847*x^8 + 1856*x^6 + 490*x^4 + 24*x^2 + 1, 1)
 

Normalized defining polynomial

\( x^{24} + 12 x^{22} + 91 x^{20} + 428 x^{18} + 1475 x^{16} + 3472 x^{14} + 5972 x^{12} + 6412 x^{10} + 4847 x^{8} + 1856 x^{6} + 490 x^{4} + 24 x^{2} + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $24$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 12]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(11935913115234869169771450911000887296=2^{48}\cdot 3^{12}\cdot 7^{20}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $35.06$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(168=2^{3}\cdot 3\cdot 7\)
Dirichlet character group:    $\lbrace$$\chi_{168}(1,·)$, $\chi_{168}(131,·)$, $\chi_{168}(65,·)$, $\chi_{168}(137,·)$, $\chi_{168}(139,·)$, $\chi_{168}(143,·)$, $\chi_{168}(115,·)$, $\chi_{168}(19,·)$, $\chi_{168}(149,·)$, $\chi_{168}(25,·)$, $\chi_{168}(29,·)$, $\chi_{168}(31,·)$, $\chi_{168}(37,·)$, $\chi_{168}(167,·)$, $\chi_{168}(103,·)$, $\chi_{168}(109,·)$, $\chi_{168}(47,·)$, $\chi_{168}(113,·)$, $\chi_{168}(83,·)$, $\chi_{168}(53,·)$, $\chi_{168}(55,·)$, $\chi_{168}(121,·)$, $\chi_{168}(59,·)$, $\chi_{168}(85,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $\frac{1}{537280551687823} a^{22} + \frac{82856973818048}{537280551687823} a^{20} - \frac{183658044197853}{537280551687823} a^{18} - \frac{90009918208927}{537280551687823} a^{16} + \frac{436933797008}{537280551687823} a^{14} + \frac{26913902593244}{537280551687823} a^{12} - \frac{127631518068988}{537280551687823} a^{10} + \frac{197945603972016}{537280551687823} a^{8} + \frac{127287830745369}{537280551687823} a^{6} - \frac{442272914252}{1594304307679} a^{4} + \frac{199772741879529}{537280551687823} a^{2} - \frac{69311194150715}{537280551687823}$, $\frac{1}{537280551687823} a^{23} + \frac{82856973818048}{537280551687823} a^{21} - \frac{183658044197853}{537280551687823} a^{19} - \frac{90009918208927}{537280551687823} a^{17} + \frac{436933797008}{537280551687823} a^{15} + \frac{26913902593244}{537280551687823} a^{13} - \frac{127631518068988}{537280551687823} a^{11} + \frac{197945603972016}{537280551687823} a^{9} + \frac{127287830745369}{537280551687823} a^{7} - \frac{442272914252}{1594304307679} a^{5} + \frac{199772741879529}{537280551687823} a^{3} - \frac{69311194150715}{537280551687823} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{42}$, which has order $84$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{29010283538992}{537280551687823} a^{22} + \frac{346101160216658}{537280551687823} a^{20} + \frac{2616392577418844}{537280551687823} a^{18} + \frac{12240697512125887}{537280551687823} a^{16} + \frac{41986497855563600}{537280551687823} a^{14} + \frac{98021397943898023}{537280551687823} a^{12} + \frac{167168152663220408}{537280551687823} a^{10} + \frac{176034583297029233}{537280551687823} a^{8} + \frac{131103604929740548}{537280551687823} a^{6} + \frac{140454184611027}{1594304307679} a^{4} + \frac{13067053326112660}{537280551687823} a^{2} + \frac{639817928930641}{537280551687823} \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 14049698.366727958 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^2\times C_6$ (as 24T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 24
The 24 conjugacy class representatives for $C_2^2\times C_6$
Character table for $C_2^2\times C_6$ is not computed

Intermediate fields

\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-6}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-42}) \), \(\Q(\sqrt{14}) \), \(\Q(\sqrt{7}) \), \(\Q(\sqrt{-21}) \), \(\Q(\zeta_{7})^+\), \(\Q(\sqrt{2}, \sqrt{-3})\), \(\Q(\sqrt{-3}, \sqrt{14})\), \(\Q(\sqrt{-3}, \sqrt{7})\), \(\Q(\sqrt{-6}, \sqrt{7})\), \(\Q(\sqrt{-6}, \sqrt{14})\), \(\Q(\sqrt{2}, \sqrt{-21})\), \(\Q(\sqrt{2}, \sqrt{7})\), 6.0.64827.1, 6.0.33191424.1, 6.6.1229312.1, 6.0.232339968.1, 6.6.8605184.1, \(\Q(\zeta_{28})^+\), 6.0.29042496.1, 8.0.12745506816.4, 12.0.1101670627147776.2, 12.0.53981860730241024.3, 12.0.843466573910016.2, 12.0.3454839086735425536.2, 12.0.3454839086735425536.3, 12.0.3454839086735425536.6, \(\Q(\zeta_{56})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.6.0.1}{6} }^{4}$ R ${\href{/LocalNumberField/11.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{12}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{12}$ ${\href{/LocalNumberField/31.3.0.1}{3} }^{8}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{12}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{12}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{4}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.12.6.2$x^{12} + 108 x^{6} - 243 x^{2} + 2916$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
3.12.6.2$x^{12} + 108 x^{6} - 243 x^{2} + 2916$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
$7$7.6.5.2$x^{6} - 7$$6$$1$$5$$C_6$$[\ ]_{6}$
7.6.5.2$x^{6} - 7$$6$$1$$5$$C_6$$[\ ]_{6}$
7.6.5.2$x^{6} - 7$$6$$1$$5$$C_6$$[\ ]_{6}$
7.6.5.2$x^{6} - 7$$6$$1$$5$$C_6$$[\ ]_{6}$