Normalized defining polynomial
\( x^{24} + 4 x^{22} + 15 x^{20} + 56 x^{18} + 209 x^{16} + 780 x^{14} + 2911 x^{12} + 780 x^{10} + 209 x^{8} + 56 x^{6} + 15 x^{4} + 4 x^{2} + 1 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11935913115234869169771450911000887296=2^{48}\cdot 3^{12}\cdot 7^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(168=2^{3}\cdot 3\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{168}(1,·)$, $\chi_{168}(131,·)$, $\chi_{168}(71,·)$, $\chi_{168}(73,·)$, $\chi_{168}(11,·)$, $\chi_{168}(13,·)$, $\chi_{168}(143,·)$, $\chi_{168}(145,·)$, $\chi_{168}(83,·)$, $\chi_{168}(85,·)$, $\chi_{168}(23,·)$, $\chi_{168}(25,·)$, $\chi_{168}(155,·)$, $\chi_{168}(157,·)$, $\chi_{168}(95,·)$, $\chi_{168}(97,·)$, $\chi_{168}(37,·)$, $\chi_{168}(167,·)$, $\chi_{168}(107,·)$, $\chi_{168}(109,·)$, $\chi_{168}(47,·)$, $\chi_{168}(121,·)$, $\chi_{168}(59,·)$, $\chi_{168}(61,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2911} a^{14} + \frac{780}{2911}$, $\frac{1}{2911} a^{15} + \frac{780}{2911} a$, $\frac{1}{2911} a^{16} + \frac{780}{2911} a^{2}$, $\frac{1}{2911} a^{17} + \frac{780}{2911} a^{3}$, $\frac{1}{2911} a^{18} + \frac{780}{2911} a^{4}$, $\frac{1}{2911} a^{19} + \frac{780}{2911} a^{5}$, $\frac{1}{2911} a^{20} + \frac{780}{2911} a^{6}$, $\frac{1}{2911} a^{21} + \frac{780}{2911} a^{7}$, $\frac{1}{2911} a^{22} + \frac{780}{2911} a^{8}$, $\frac{1}{2911} a^{23} + \frac{780}{2911} a^{9}$
Class group and class number
$C_{2}\times C_{28}$, which has order $56$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{56}{2911} a^{22} - \frac{564719}{2911} a^{8} \) (order $14$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 48026846.01450934 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_6$ (as 24T3):
| An abelian group of order 24 |
| The 24 conjugacy class representatives for $C_2^2\times C_6$ |
| Character table for $C_2^2\times C_6$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{4}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.24.318 | $x^{12} + 60 x^{11} + 14 x^{10} + 36 x^{9} - 34 x^{8} - 32 x^{7} - 48 x^{6} - 32 x^{5} + 36 x^{4} - 16 x^{3} - 40 x^{2} - 48 x + 56$ | $4$ | $3$ | $24$ | $C_6\times C_2$ | $[2, 3]^{3}$ |
| 2.12.24.318 | $x^{12} + 60 x^{11} + 14 x^{10} + 36 x^{9} - 34 x^{8} - 32 x^{7} - 48 x^{6} - 32 x^{5} + 36 x^{4} - 16 x^{3} - 40 x^{2} - 48 x + 56$ | $4$ | $3$ | $24$ | $C_6\times C_2$ | $[2, 3]^{3}$ | |
| $3$ | 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $7$ | 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |
| 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |