Normalized defining polynomial
\( x^{24} - 6 x^{22} + 27 x^{20} - 109 x^{18} + 417 x^{16} - 927 x^{14} + 1918 x^{12} - 3582 x^{10} + 5157 x^{8} - 622 x^{6} + 75 x^{4} - 9 x^{2} + 1 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(118593292086517824000000000000000000=2^{24}\cdot 3^{32}\cdot 5^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(180=2^{2}\cdot 3^{2}\cdot 5\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{180}(1,·)$, $\chi_{180}(67,·)$, $\chi_{180}(133,·)$, $\chi_{180}(7,·)$, $\chi_{180}(73,·)$, $\chi_{180}(139,·)$, $\chi_{180}(13,·)$, $\chi_{180}(79,·)$, $\chi_{180}(19,·)$, $\chi_{180}(151,·)$, $\chi_{180}(91,·)$, $\chi_{180}(157,·)$, $\chi_{180}(31,·)$, $\chi_{180}(97,·)$, $\chi_{180}(163,·)$, $\chi_{180}(37,·)$, $\chi_{180}(103,·)$, $\chi_{180}(169,·)$, $\chi_{180}(43,·)$, $\chi_{180}(109,·)$, $\chi_{180}(49,·)$, $\chi_{180}(121,·)$, $\chi_{180}(61,·)$, $\chi_{180}(127,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{2082671} a^{18} - \frac{305717}{2082671} a^{16} + \frac{940293}{2082671} a^{14} - \frac{807635}{2082671} a^{12} + \frac{854232}{2082671} a^{10} - \frac{439510}{2082671} a^{8} + \frac{76434}{2082671} a^{6} + \frac{395442}{2082671} a^{4} - \frac{538377}{2082671} a^{2} - \frac{405150}{2082671}$, $\frac{1}{2082671} a^{19} - \frac{305717}{2082671} a^{17} + \frac{940293}{2082671} a^{15} - \frac{807635}{2082671} a^{13} + \frac{854232}{2082671} a^{11} - \frac{439510}{2082671} a^{9} + \frac{76434}{2082671} a^{7} + \frac{395442}{2082671} a^{5} - \frac{538377}{2082671} a^{3} - \frac{405150}{2082671} a$, $\frac{1}{2082671} a^{20} + \frac{440131}{2082671} a^{10} - \frac{632838}{2082671}$, $\frac{1}{2082671} a^{21} + \frac{440131}{2082671} a^{11} - \frac{632838}{2082671} a$, $\frac{1}{2082671} a^{22} + \frac{440131}{2082671} a^{12} - \frac{632838}{2082671} a^{2}$, $\frac{1}{2082671} a^{23} + \frac{440131}{2082671} a^{13} - \frac{632838}{2082671} a^{3}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{785142}{2082671} a^{23} - \frac{4623614}{2082671} a^{21} + \frac{20675406}{2082671} a^{19} - \frac{83224782}{2082671} a^{17} + \frac{317895272}{2082671} a^{15} - \frac{691448388}{2082671} a^{13} + \frac{1425032730}{2082671} a^{11} - \frac{2645056160}{2082671} a^{9} + \frac{3736613901}{2082671} a^{7} - \frac{38471958}{2082671} a^{5} + \frac{4623614}{2082671} a^{3} - \frac{523428}{2082671} a \) (order $20$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 68395599.77210574 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{12}$ (as 24T2):
| An abelian group of order 24 |
| The 24 conjugacy class representatives for $C_2\times C_{12}$ |
| Character table for $C_2\times C_{12}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{8}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.12.16.14 | $x^{12} + 72 x^{11} - 36 x^{10} + 108 x^{9} - 108 x^{8} + 54 x^{7} + 72 x^{6} - 81 x^{5} - 81 x^{4} - 81 x^{3} + 81 x^{2} - 81$ | $3$ | $4$ | $16$ | $C_{12}$ | $[2]^{4}$ |
| 3.12.16.14 | $x^{12} + 72 x^{11} - 36 x^{10} + 108 x^{9} - 108 x^{8} + 54 x^{7} + 72 x^{6} - 81 x^{5} - 81 x^{4} - 81 x^{3} + 81 x^{2} - 81$ | $3$ | $4$ | $16$ | $C_{12}$ | $[2]^{4}$ | |
| $5$ | 5.12.9.2 | $x^{12} - 10 x^{8} + 25 x^{4} - 500$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
| 5.12.9.2 | $x^{12} - 10 x^{8} + 25 x^{4} - 500$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ | |