Normalized defining polynomial
\( x^{24} + 117 x^{18} + 9593 x^{12} + 479232 x^{6} + 16777216 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(115005191066819204356102017148681640625=3^{36}\cdot 5^{12}\cdot 11^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(495=3^{2}\cdot 5\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{495}(1,·)$, $\chi_{495}(386,·)$, $\chi_{495}(131,·)$, $\chi_{495}(199,·)$, $\chi_{495}(329,·)$, $\chi_{495}(331,·)$, $\chi_{495}(76,·)$, $\chi_{495}(461,·)$, $\chi_{495}(274,·)$, $\chi_{495}(406,·)$, $\chi_{495}(89,·)$, $\chi_{495}(221,·)$, $\chi_{495}(34,·)$, $\chi_{495}(419,·)$, $\chi_{495}(164,·)$, $\chi_{495}(166,·)$, $\chi_{495}(296,·)$, $\chi_{495}(364,·)$, $\chi_{495}(109,·)$, $\chi_{495}(494,·)$, $\chi_{495}(241,·)$, $\chi_{495}(439,·)$, $\chi_{495}(56,·)$, $\chi_{495}(254,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{2}$, $\frac{1}{14} a^{12} + \frac{3}{7} a^{6} - \frac{1}{2} a^{3} - \frac{3}{7}$, $\frac{1}{28} a^{13} - \frac{1}{28} a^{7} - \frac{1}{2} a^{4} - \frac{13}{28} a$, $\frac{1}{112} a^{14} + \frac{13}{112} a^{8} - \frac{1}{2} a^{5} + \frac{1}{112} a^{2}$, $\frac{1}{448} a^{15} - \frac{43}{448} a^{9} - \frac{1}{2} a^{6} - \frac{167}{448} a^{3}$, $\frac{1}{1792} a^{16} - \frac{267}{1792} a^{10} - \frac{391}{1792} a^{4} - \frac{1}{2} a$, $\frac{1}{7168} a^{17} + \frac{629}{7168} a^{11} + \frac{1401}{7168} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{550100992} a^{18} - \frac{1}{896} a^{15} - \frac{5}{8192} a^{12} - \frac{181}{896} a^{9} - \frac{585}{8192} a^{6} - \frac{57}{896} a^{3} - \frac{57441}{134302}$, $\frac{1}{2200403968} a^{19} - \frac{1}{3584} a^{16} - \frac{5}{32768} a^{13} - \frac{629}{3584} a^{10} + \frac{3511}{32768} a^{7} - \frac{1401}{3584} a^{4} + \frac{211163}{537208} a$, $\frac{1}{8801615872} a^{20} - \frac{1}{14336} a^{17} - \frac{5}{131072} a^{14} + \frac{2955}{14336} a^{11} + \frac{3511}{131072} a^{8} + \frac{5767}{14336} a^{5} + \frac{748371}{2148832} a^{2}$, $\frac{1}{35206463488} a^{21} + \frac{4061}{3670016} a^{15} - \frac{610303}{3670016} a^{9} - \frac{213415}{2148832} a^{3} - \frac{1}{2}$, $\frac{1}{140825853952} a^{22} + \frac{4061}{14680064} a^{16} - \frac{1}{56} a^{13} - \frac{2445311}{14680064} a^{10} - \frac{13}{56} a^{7} + \frac{1935417}{8595328} a^{4} - \frac{1}{56} a$, $\frac{1}{563303415808} a^{23} + \frac{4061}{58720256} a^{17} - \frac{1}{224} a^{14} + \frac{12234753}{58720256} a^{11} + \frac{43}{224} a^{8} - \frac{6659911}{34381312} a^{5} - \frac{57}{224} a^{2}$
Class group and class number
$C_{42}$, which has order $42$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1173}{70412926976} a^{22} + \frac{95}{7340032} a^{16} - \frac{1173}{7340032} a^{10} - \frac{137241}{17190656} a^{4} \) (order $18$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 213596502.21615326 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_6$ (as 24T3):
| An abelian group of order 24 |
| The 24 conjugacy class representatives for $C_2^2\times C_6$ |
| Character table for $C_2^2\times C_6$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{4}$ | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{4}$ | R | ${\href{/LocalNumberField/13.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.12.18.82 | $x^{12} - 9 x^{9} + 9 x^{8} - 9 x^{5} - 9 x^{4} - 9 x^{3} + 9$ | $6$ | $2$ | $18$ | $C_6\times C_2$ | $[2]_{2}^{2}$ |
| 3.12.18.82 | $x^{12} - 9 x^{9} + 9 x^{8} - 9 x^{5} - 9 x^{4} - 9 x^{3} + 9$ | $6$ | $2$ | $18$ | $C_6\times C_2$ | $[2]_{2}^{2}$ | |
| $5$ | 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $11$ | 11.12.6.1 | $x^{12} + 242 x^{8} + 21296 x^{6} + 14641 x^{4} + 1932612 x^{2} + 113379904$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| 11.12.6.1 | $x^{12} + 242 x^{8} + 21296 x^{6} + 14641 x^{4} + 1932612 x^{2} + 113379904$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |