Normalized defining polynomial
\(x^{24} + 9 x^{22} + 42 x^{20} + 139 x^{18} + 376 x^{16} + 896 x^{14} + 1905 x^{12} + 3584 x^{10} + 6016 x^{8} + 8896 x^{6} + 10752 x^{4} + 9216 x^{2} + 4096\)
Invariants
Degree: | $24$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 12]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(1041229780068396944496497143054336\)\(\medspace = 2^{24}\cdot 7^{20}\cdot 167^{4}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $23.75$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 7, 167$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $8$ | ||
This field is not Galois over $\Q$. | |||
This is a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} + \frac{1}{4} a^{3}$, $\frac{1}{4} a^{12} - \frac{1}{2} a^{8} + \frac{1}{4} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{13} - \frac{1}{4} a^{9} - \frac{3}{8} a^{7} + \frac{3}{8} a^{5} + \frac{1}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{16} a^{14} - \frac{1}{8} a^{10} - \frac{3}{16} a^{8} - \frac{5}{16} a^{6} + \frac{1}{16} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{16} a^{15} - \frac{1}{8} a^{11} - \frac{3}{16} a^{9} - \frac{5}{16} a^{7} + \frac{1}{16} a^{5} + \frac{1}{4} a^{3}$, $\frac{1}{16} a^{16} - \frac{1}{8} a^{12} + \frac{1}{16} a^{10} + \frac{7}{16} a^{8} - \frac{3}{16} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{32} a^{17} - \frac{1}{32} a^{15} - \frac{1}{16} a^{13} - \frac{1}{32} a^{11} - \frac{1}{16} a^{9} + \frac{3}{16} a^{7} - \frac{13}{32} a^{5} + \frac{3}{8} a^{3}$, $\frac{1}{64} a^{18} + \frac{1}{64} a^{16} - \frac{1}{32} a^{14} - \frac{5}{64} a^{12} - \frac{1}{8} a^{10} + \frac{7}{16} a^{8} + \frac{21}{64} a^{6} - \frac{3}{16} a^{4}$, $\frac{1}{128} a^{19} + \frac{1}{128} a^{17} + \frac{1}{64} a^{15} - \frac{5}{128} a^{13} + \frac{49}{128} a^{7} - \frac{5}{16} a^{5} - \frac{1}{4} a^{3}$, $\frac{1}{1024} a^{20} + \frac{1}{1024} a^{18} + \frac{9}{512} a^{16} - \frac{21}{1024} a^{14} - \frac{3}{64} a^{10} - \frac{15}{1024} a^{8} + \frac{47}{128} a^{6} - \frac{5}{64} a^{4} - \frac{1}{16} a^{2} + \frac{1}{4}$, $\frac{1}{2048} a^{21} + \frac{1}{2048} a^{19} + \frac{9}{1024} a^{17} - \frac{21}{2048} a^{15} + \frac{13}{128} a^{11} - \frac{271}{2048} a^{9} + \frac{15}{256} a^{7} + \frac{27}{128} a^{5} + \frac{3}{32} a^{3} - \frac{3}{8} a$, $\frac{1}{1851392} a^{22} - \frac{667}{1851392} a^{20} - \frac{5957}{925696} a^{18} - \frac{45837}{1851392} a^{16} - \frac{6157}{462848} a^{14} - \frac{819}{115712} a^{12} - \frac{165327}{1851392} a^{10} + \frac{228135}{462848} a^{8} - \frac{7879}{115712} a^{6} + \frac{4117}{14464} a^{4} + \frac{77}{226} a^{2} - \frac{567}{1808}$, $\frac{1}{3702784} a^{23} - \frac{667}{3702784} a^{21} - \frac{5957}{1851392} a^{19} - \frac{45837}{3702784} a^{17} - \frac{6157}{925696} a^{15} - \frac{819}{231424} a^{13} + \frac{297521}{3702784} a^{11} + \frac{112423}{925696} a^{9} + \frac{78905}{231424} a^{7} + \frac{11349}{28928} a^{5} + \frac{267}{904} a^{3} - \frac{567}{3616} a$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
Rank: | $11$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( \frac{18113}{3702784} a^{23} + \frac{126245}{3702784} a^{21} + \frac{248187}{1851392} a^{19} + \frac{1463347}{3702784} a^{17} + \frac{921395}{925696} a^{15} + \frac{520797}{231424} a^{13} + \frac{16605425}{3702784} a^{11} + \frac{7293415}{925696} a^{9} + \frac{2866025}{231424} a^{7} + \frac{476669}{28928} a^{5} + \frac{1850}{113} a^{3} + \frac{31913}{3616} a \) (order $28$) ![]() | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 18217606.15517919 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$C_2^3\times A_4$ (as 24T135):
A solvable group of order 96 |
The 32 conjugacy class representatives for $C_2^3\times A_4$ |
Character table for $C_2^3\times A_4$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{4}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$2$ | 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
$7$ | 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |
7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |
$167$ | 167.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
167.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
167.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
167.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
167.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
167.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
167.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
167.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
167.4.2.1 | $x^{4} + 1503 x^{2} + 697225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
167.4.2.1 | $x^{4} + 1503 x^{2} + 697225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |