Properties

Label 24.0.10370328622...6257.1
Degree $24$
Signature $[0, 12]$
Discriminant $3^{36}\cdot 17^{21}$
Root discriminant $61.99$
Ramified primes $3, 17$
Class number $968$ (GRH)
Class group $[2, 22, 22]$ (GRH)
Galois group $C_{24}$ (as 24T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![46819, 134169, 328707, 411790, 631794, 581175, 684787, 326223, 434943, 127001, 91182, 63306, -6399, 12591, 4752, -1085, 2106, -162, -269, -21, -99, -4, 6, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^24 + 6*x^22 - 4*x^21 - 99*x^20 - 21*x^19 - 269*x^18 - 162*x^17 + 2106*x^16 - 1085*x^15 + 4752*x^14 + 12591*x^13 - 6399*x^12 + 63306*x^11 + 91182*x^10 + 127001*x^9 + 434943*x^8 + 326223*x^7 + 684787*x^6 + 581175*x^5 + 631794*x^4 + 411790*x^3 + 328707*x^2 + 134169*x + 46819)
 
gp: K = bnfinit(x^24 + 6*x^22 - 4*x^21 - 99*x^20 - 21*x^19 - 269*x^18 - 162*x^17 + 2106*x^16 - 1085*x^15 + 4752*x^14 + 12591*x^13 - 6399*x^12 + 63306*x^11 + 91182*x^10 + 127001*x^9 + 434943*x^8 + 326223*x^7 + 684787*x^6 + 581175*x^5 + 631794*x^4 + 411790*x^3 + 328707*x^2 + 134169*x + 46819, 1)
 

Normalized defining polynomial

\( x^{24} + 6 x^{22} - 4 x^{21} - 99 x^{20} - 21 x^{19} - 269 x^{18} - 162 x^{17} + 2106 x^{16} - 1085 x^{15} + 4752 x^{14} + 12591 x^{13} - 6399 x^{12} + 63306 x^{11} + 91182 x^{10} + 127001 x^{9} + 434943 x^{8} + 326223 x^{7} + 684787 x^{6} + 581175 x^{5} + 631794 x^{4} + 411790 x^{3} + 328707 x^{2} + 134169 x + 46819 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $24$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 12]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(10370328622637411153913943764610276201876257=3^{36}\cdot 17^{21}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $61.99$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 17$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(153=3^{2}\cdot 17\)
Dirichlet character group:    $\lbrace$$\chi_{153}(128,·)$, $\chi_{153}(1,·)$, $\chi_{153}(2,·)$, $\chi_{153}(67,·)$, $\chi_{153}(4,·)$, $\chi_{153}(134,·)$, $\chi_{153}(8,·)$, $\chi_{153}(13,·)$, $\chi_{153}(77,·)$, $\chi_{153}(16,·)$, $\chi_{153}(83,·)$, $\chi_{153}(26,·)$, $\chi_{153}(32,·)$, $\chi_{153}(103,·)$, $\chi_{153}(104,·)$, $\chi_{153}(64,·)$, $\chi_{153}(106,·)$, $\chi_{153}(110,·)$, $\chi_{153}(115,·)$, $\chi_{153}(52,·)$, $\chi_{153}(53,·)$, $\chi_{153}(118,·)$, $\chi_{153}(55,·)$, $\chi_{153}(59,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{47} a^{21} - \frac{20}{47} a^{19} + \frac{18}{47} a^{18} - \frac{2}{47} a^{17} + \frac{11}{47} a^{16} - \frac{9}{47} a^{15} - \frac{22}{47} a^{14} - \frac{3}{47} a^{13} - \frac{6}{47} a^{12} + \frac{22}{47} a^{11} - \frac{9}{47} a^{10} - \frac{6}{47} a^{9} + \frac{10}{47} a^{8} + \frac{7}{47} a^{7} - \frac{9}{47} a^{6} - \frac{4}{47} a^{5} + \frac{8}{47} a^{4} - \frac{3}{47} a^{3} + \frac{6}{47} a^{2} - \frac{8}{47} a - \frac{11}{47}$, $\frac{1}{392165791} a^{22} - \frac{1246293}{392165791} a^{21} - \frac{162383798}{392165791} a^{20} - \frac{150285328}{392165791} a^{19} + \frac{40101587}{392165791} a^{18} - \frac{20964398}{392165791} a^{17} + \frac{102755781}{392165791} a^{16} + \frac{87874179}{392165791} a^{15} + \frac{194196157}{392165791} a^{14} - \frac{159946946}{392165791} a^{13} - \frac{148220060}{392165791} a^{12} - \frac{92149675}{392165791} a^{11} + \frac{15971386}{392165791} a^{10} - \frac{86459158}{392165791} a^{9} - \frac{131429229}{392165791} a^{8} + \frac{141909906}{392165791} a^{7} + \frac{132772686}{392165791} a^{6} - \frac{6713966}{392165791} a^{5} - \frac{139826553}{392165791} a^{4} + \frac{158743287}{392165791} a^{3} - \frac{140891731}{392165791} a^{2} - \frac{116302781}{392165791} a + \frac{27894481}{392165791}$, $\frac{1}{3790690878659584575852095719862284857072457249457420869379299} a^{23} + \frac{3266698025928559952790936276434215454714672118397522}{3790690878659584575852095719862284857072457249457420869379299} a^{22} - \frac{21237435779209829504823114292582909329387755385268318387553}{3790690878659584575852095719862284857072457249457420869379299} a^{21} - \frac{682912350552189334355472621112853718243568374005040876284947}{3790690878659584575852095719862284857072457249457420869379299} a^{20} + \frac{27447527317055326444416539365344902552140327629056928960076}{80652997418289033528767994039623082065371430839519592965517} a^{19} - \frac{362180338240859277182384721183991034812053991425332515321168}{3790690878659584575852095719862284857072457249457420869379299} a^{18} + \frac{395775931720454730013119435410339720457533238063589189093872}{3790690878659584575852095719862284857072457249457420869379299} a^{17} - \frac{1887745710745735241164091867758632122285165014441713141368630}{3790690878659584575852095719862284857072457249457420869379299} a^{16} - \frac{233962317924050374550121479166514219731636492345770721018241}{3790690878659584575852095719862284857072457249457420869379299} a^{15} + \frac{25049423885935693933919986106697974049156041325182729500851}{80652997418289033528767994039623082065371430839519592965517} a^{14} + \frac{1468638854041361955790561328968961748003755636417602278323500}{3790690878659584575852095719862284857072457249457420869379299} a^{13} + \frac{1367575022560757878862251575126156625298257955974096067863975}{3790690878659584575852095719862284857072457249457420869379299} a^{12} + \frac{318898367672296046941502951924006534582208210744142009854241}{3790690878659584575852095719862284857072457249457420869379299} a^{11} + \frac{1487906365463741914425864066570565892026266295496018321346517}{3790690878659584575852095719862284857072457249457420869379299} a^{10} + \frac{788429854216993764595256738467296518987649642358029575865561}{3790690878659584575852095719862284857072457249457420869379299} a^{9} - \frac{1193689759688778478350764598350250586432575428212109400958695}{3790690878659584575852095719862284857072457249457420869379299} a^{8} - \frac{1841068608221735249342232569954017022878246282026516985604829}{3790690878659584575852095719862284857072457249457420869379299} a^{7} - \frac{386850524535931943317326941523740819616398724294901561021941}{3790690878659584575852095719862284857072457249457420869379299} a^{6} + \frac{1270989428145675486493525718410838310073264763405127083703416}{3790690878659584575852095719862284857072457249457420869379299} a^{5} + \frac{1839237713861598744778628549063117180869845627712533270583780}{3790690878659584575852095719862284857072457249457420869379299} a^{4} - \frac{1538127303883097117001588285604328851090101689850532771183520}{3790690878659584575852095719862284857072457249457420869379299} a^{3} - \frac{1522195808247345943979909447761992780642034425115004603806569}{3790690878659584575852095719862284857072457249457420869379299} a^{2} - \frac{256234361319933948335518039193145097468113873770522959253282}{3790690878659584575852095719862284857072457249457420869379299} a + \frac{271313780248774532340668121459730344777286892188197225405132}{3790690878659584575852095719862284857072457249457420869379299}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{22}\times C_{22}$, which has order $968$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 363126034.10126877 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{24}$ (as 24T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 24
The 24 conjugacy class representatives for $C_{24}$
Character table for $C_{24}$ is not computed

Intermediate fields

\(\Q(\sqrt{17}) \), \(\Q(\zeta_{9})^+\), 4.4.4913.1, 6.6.32234193.1, 8.0.33237432513.1, 12.12.5104819233548816337.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.12.0.1}{12} }^{2}$ R $24$ $24$ $24$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{4}$ R ${\href{/LocalNumberField/19.4.0.1}{4} }^{6}$ $24$ $24$ $24$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{3}$ $24$ ${\href{/LocalNumberField/43.12.0.1}{12} }^{2}$ ${\href{/LocalNumberField/47.3.0.1}{3} }^{8}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{6}$ ${\href{/LocalNumberField/59.12.0.1}{12} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
$17$17.8.7.1$x^{8} - 1377$$8$$1$$7$$C_8$$[\ ]_{8}$
17.8.7.1$x^{8} - 1377$$8$$1$$7$$C_8$$[\ ]_{8}$
17.8.7.1$x^{8} - 1377$$8$$1$$7$$C_8$$[\ ]_{8}$