Normalized defining polynomial
\(x^{24} - x^{23} - x^{22} + 4 x^{21} - 4 x^{20} - 4 x^{19} + 17 x^{18} + 12 x^{17} - 46 x^{16} + 43 x^{15} + 44 x^{14} - 188 x^{13} + 189 x^{12} + 188 x^{11} + 44 x^{10} - 43 x^{9} - 46 x^{8} - 12 x^{7} + 17 x^{6} + 4 x^{5} - 4 x^{4} - 4 x^{3} - x^{2} + x + 1\)
Invariants
Degree: | $24$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 12]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(10352754344108696148301025390625\)\(\medspace = 3^{12}\cdot 5^{12}\cdot 7^{20}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $19.60$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $3, 5, 7$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Gal(K/\Q)|$: | $24$ | ||
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(105=3\cdot 5\cdot 7\) | ||
Dirichlet character group: | $\lbrace$$\chi_{105}(64,·)$, $\chi_{105}(1,·)$, $\chi_{105}(4,·)$, $\chi_{105}(71,·)$, $\chi_{105}(74,·)$, $\chi_{105}(11,·)$, $\chi_{105}(76,·)$, $\chi_{105}(79,·)$, $\chi_{105}(16,·)$, $\chi_{105}(19,·)$, $\chi_{105}(86,·)$, $\chi_{105}(89,·)$, $\chi_{105}(26,·)$, $\chi_{105}(29,·)$, $\chi_{105}(94,·)$, $\chi_{105}(31,·)$, $\chi_{105}(34,·)$, $\chi_{105}(101,·)$, $\chi_{105}(104,·)$, $\chi_{105}(41,·)$, $\chi_{105}(44,·)$, $\chi_{105}(46,·)$, $\chi_{105}(59,·)$, $\chi_{105}(61,·)$$\rbrace$ | ||
This is a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{13} a^{14} - \frac{5}{13} a^{7} - \frac{1}{13}$, $\frac{1}{13} a^{15} - \frac{5}{13} a^{8} - \frac{1}{13} a$, $\frac{1}{13} a^{16} - \frac{5}{13} a^{9} - \frac{1}{13} a^{2}$, $\frac{1}{13} a^{17} - \frac{5}{13} a^{10} - \frac{1}{13} a^{3}$, $\frac{1}{26} a^{18} - \frac{1}{26} a^{15} - \frac{1}{2} a^{12} + \frac{4}{13} a^{11} - \frac{1}{2} a^{9} - \frac{4}{13} a^{8} - \frac{1}{2} a^{6} + \frac{6}{13} a^{4} - \frac{1}{2} a^{3} - \frac{6}{13} a - \frac{1}{2}$, $\frac{1}{10946} a^{19} + \frac{50}{5473} a^{18} + \frac{159}{5473} a^{17} + \frac{25}{842} a^{16} - \frac{10}{5473} a^{15} - \frac{206}{5473} a^{14} - \frac{159}{842} a^{13} + \frac{1694}{5473} a^{12} + \frac{1440}{5473} a^{11} + \frac{477}{10946} a^{10} - \frac{192}{421} a^{9} - \frac{340}{5473} a^{8} - \frac{2685}{10946} a^{7} + \frac{10}{421} a^{6} + \frac{2606}{5473} a^{5} + \frac{1525}{10946} a^{4} - \frac{1134}{5473} a^{3} + \frac{128}{421} a^{2} - \frac{3321}{10946} a + \frac{1909}{5473}$, $\frac{1}{10946} a^{20} + \frac{1}{10946} a^{18} - \frac{321}{10946} a^{17} + \frac{159}{5473} a^{16} + \frac{25}{842} a^{15} + \frac{401}{10946} a^{14} + \frac{1057}{5473} a^{13} - \frac{159}{842} a^{12} - \frac{2085}{10946} a^{11} - \frac{244}{5473} a^{10} + \frac{477}{10946} a^{9} + \frac{37}{842} a^{8} + \frac{1344}{5473} a^{7} - \frac{4369}{10946} a^{6} - \frac{401}{842} a^{5} + \frac{2606}{5473} a^{4} - \frac{3527}{10946} a^{3} + \frac{3205}{10946} a^{2} + \frac{128}{421} a + \frac{1731}{10946}$, $\frac{1}{10946} a^{21} + \frac{4181}{10946}$, $\frac{1}{10946} a^{22} + \frac{4181}{10946} a$, $\frac{1}{10946} a^{23} + \frac{4181}{10946} a^{2}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $11$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -\frac{6765}{10946} a^{23} + \frac{6765}{10946} a^{22} + \frac{6765}{10946} a^{21} - \frac{27061}{10946} a^{20} + \frac{13530}{5473} a^{19} + \frac{13530}{5473} a^{18} - \frac{115005}{10946} a^{17} - \frac{40590}{5473} a^{16} + \frac{155595}{5473} a^{15} - \frac{290895}{10946} a^{14} - \frac{148830}{5473} a^{13} + \frac{635910}{5473} a^{12} - \frac{1278585}{10946} a^{11} - \frac{635910}{5473} a^{10} - \frac{148830}{5473} a^{9} + \frac{290895}{10946} a^{8} + \frac{155595}{5473} a^{7} + \frac{40590}{5473} a^{6} - \frac{115005}{10946} a^{5} - \frac{13530}{5473} a^{4} + \frac{13530}{5473} a^{3} + \frac{13530}{5473} a^{2} + \frac{6765}{10946} a - \frac{6765}{10946} \) (order $42$) ![]() | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 4608312.303502872 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$C_2^2\times C_6$ (as 24T3):
An abelian group of order 24 |
The 24 conjugacy class representatives for $C_2^2\times C_6$ |
Character table for $C_2^2\times C_6$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{4}$ | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{12}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$3$ | 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
$5$ | 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
$7$ | 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |
7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |