Normalized defining polynomial
\( x^{24} - x^{23} - 2 x^{22} + 5 x^{21} + x^{20} - 16 x^{19} + 13 x^{18} + 35 x^{17} - 74 x^{16} - 31 x^{15} + 253 x^{14} - 160 x^{13} - 599 x^{12} - 480 x^{11} + 2277 x^{10} - 837 x^{9} - 5994 x^{8} + 8505 x^{7} + 9477 x^{6} - 34992 x^{5} + 6561 x^{4} + 98415 x^{3} - 118098 x^{2} - 177147 x + 531441 \)
Invariants
| Degree: | $24$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 12]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10080126276029253939999801345921207049=11^{12}\cdot 13^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(143=11\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{143}(1,·)$, $\chi_{143}(131,·)$, $\chi_{143}(133,·)$, $\chi_{143}(76,·)$, $\chi_{143}(10,·)$, $\chi_{143}(87,·)$, $\chi_{143}(12,·)$, $\chi_{143}(98,·)$, $\chi_{143}(142,·)$, $\chi_{143}(109,·)$, $\chi_{143}(120,·)$, $\chi_{143}(67,·)$, $\chi_{143}(21,·)$, $\chi_{143}(23,·)$, $\chi_{143}(89,·)$, $\chi_{143}(32,·)$, $\chi_{143}(34,·)$, $\chi_{143}(100,·)$, $\chi_{143}(43,·)$, $\chi_{143}(45,·)$, $\chi_{143}(111,·)$, $\chi_{143}(54,·)$, $\chi_{143}(56,·)$, $\chi_{143}(122,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{1797} a^{13} + \frac{1}{3} a^{12} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{160}{599}$, $\frac{1}{5391} a^{14} - \frac{1}{5391} a^{13} - \frac{4}{9} a^{12} + \frac{1}{9} a^{11} + \frac{2}{9} a^{10} + \frac{4}{9} a^{9} - \frac{1}{9} a^{8} - \frac{2}{9} a^{7} - \frac{4}{9} a^{6} + \frac{1}{9} a^{5} + \frac{2}{9} a^{4} + \frac{4}{9} a^{3} - \frac{1}{9} a^{2} - \frac{160}{1797} a + \frac{253}{599}$, $\frac{1}{16173} a^{15} - \frac{1}{16173} a^{14} - \frac{2}{16173} a^{13} + \frac{1}{27} a^{12} + \frac{11}{27} a^{11} + \frac{13}{27} a^{10} + \frac{8}{27} a^{9} + \frac{7}{27} a^{8} - \frac{4}{27} a^{7} + \frac{10}{27} a^{6} + \frac{2}{27} a^{5} - \frac{5}{27} a^{4} - \frac{1}{27} a^{3} - \frac{160}{5391} a^{2} + \frac{253}{1797} a - \frac{31}{599}$, $\frac{1}{48519} a^{16} - \frac{1}{48519} a^{15} - \frac{2}{48519} a^{14} + \frac{5}{48519} a^{13} + \frac{38}{81} a^{12} + \frac{40}{81} a^{11} + \frac{8}{81} a^{10} + \frac{34}{81} a^{9} + \frac{23}{81} a^{8} + \frac{37}{81} a^{7} - \frac{25}{81} a^{6} - \frac{5}{81} a^{5} - \frac{1}{81} a^{4} - \frac{160}{16173} a^{3} + \frac{253}{5391} a^{2} - \frac{31}{1797} a - \frac{74}{599}$, $\frac{1}{145557} a^{17} - \frac{1}{145557} a^{16} - \frac{2}{145557} a^{15} + \frac{5}{145557} a^{14} + \frac{1}{145557} a^{13} - \frac{41}{243} a^{12} - \frac{73}{243} a^{11} - \frac{47}{243} a^{10} + \frac{23}{243} a^{9} + \frac{118}{243} a^{8} + \frac{56}{243} a^{7} + \frac{76}{243} a^{6} - \frac{1}{243} a^{5} - \frac{160}{48519} a^{4} + \frac{253}{16173} a^{3} - \frac{31}{5391} a^{2} - \frac{74}{1797} a + \frac{35}{599}$, $\frac{1}{436671} a^{18} - \frac{1}{436671} a^{17} - \frac{2}{436671} a^{16} + \frac{5}{436671} a^{15} + \frac{1}{436671} a^{14} - \frac{16}{436671} a^{13} - \frac{73}{729} a^{12} + \frac{196}{729} a^{11} + \frac{23}{729} a^{10} + \frac{118}{729} a^{9} - \frac{187}{729} a^{8} - \frac{167}{729} a^{7} - \frac{1}{729} a^{6} - \frac{160}{145557} a^{5} + \frac{253}{48519} a^{4} - \frac{31}{16173} a^{3} - \frac{74}{5391} a^{2} + \frac{35}{1797} a + \frac{13}{599}$, $\frac{1}{1310013} a^{19} - \frac{1}{1310013} a^{18} - \frac{2}{1310013} a^{17} + \frac{5}{1310013} a^{16} + \frac{1}{1310013} a^{15} - \frac{16}{1310013} a^{14} + \frac{13}{1310013} a^{13} - \frac{533}{2187} a^{12} + \frac{752}{2187} a^{11} + \frac{847}{2187} a^{10} - \frac{916}{2187} a^{9} + \frac{562}{2187} a^{8} - \frac{1}{2187} a^{7} - \frac{160}{436671} a^{6} + \frac{253}{145557} a^{5} - \frac{31}{48519} a^{4} - \frac{74}{16173} a^{3} + \frac{35}{5391} a^{2} + \frac{13}{1797} a - \frac{16}{599}$, $\frac{1}{3930039} a^{20} - \frac{1}{3930039} a^{19} - \frac{2}{3930039} a^{18} + \frac{5}{3930039} a^{17} + \frac{1}{3930039} a^{16} - \frac{16}{3930039} a^{15} + \frac{13}{3930039} a^{14} + \frac{35}{3930039} a^{13} - \frac{1435}{6561} a^{12} + \frac{3034}{6561} a^{11} + \frac{1271}{6561} a^{10} + \frac{2749}{6561} a^{9} - \frac{1}{6561} a^{8} - \frac{160}{1310013} a^{7} + \frac{253}{436671} a^{6} - \frac{31}{145557} a^{5} - \frac{74}{48519} a^{4} + \frac{35}{16173} a^{3} + \frac{13}{5391} a^{2} - \frac{16}{1797} a + \frac{1}{599}$, $\frac{1}{11790117} a^{21} - \frac{1}{11790117} a^{20} - \frac{2}{11790117} a^{19} + \frac{5}{11790117} a^{18} + \frac{1}{11790117} a^{17} - \frac{16}{11790117} a^{16} + \frac{13}{11790117} a^{15} + \frac{35}{11790117} a^{14} - \frac{74}{11790117} a^{13} + \frac{9595}{19683} a^{12} - \frac{5290}{19683} a^{11} - \frac{3812}{19683} a^{10} - \frac{1}{19683} a^{9} - \frac{160}{3930039} a^{8} + \frac{253}{1310013} a^{7} - \frac{31}{436671} a^{6} - \frac{74}{145557} a^{5} + \frac{35}{48519} a^{4} + \frac{13}{16173} a^{3} - \frac{16}{5391} a^{2} + \frac{1}{1797} a + \frac{5}{599}$, $\frac{1}{35370351} a^{22} - \frac{1}{35370351} a^{21} - \frac{2}{35370351} a^{20} + \frac{5}{35370351} a^{19} + \frac{1}{35370351} a^{18} - \frac{16}{35370351} a^{17} + \frac{13}{35370351} a^{16} + \frac{35}{35370351} a^{15} - \frac{74}{35370351} a^{14} - \frac{31}{35370351} a^{13} + \frac{14393}{59049} a^{12} + \frac{15871}{59049} a^{11} - \frac{1}{59049} a^{10} - \frac{160}{11790117} a^{9} + \frac{253}{3930039} a^{8} - \frac{31}{1310013} a^{7} - \frac{74}{436671} a^{6} + \frac{35}{145557} a^{5} + \frac{13}{48519} a^{4} - \frac{16}{16173} a^{3} + \frac{1}{5391} a^{2} + \frac{5}{1797} a - \frac{2}{599}$, $\frac{1}{106111053} a^{23} - \frac{1}{106111053} a^{22} - \frac{2}{106111053} a^{21} + \frac{5}{106111053} a^{20} + \frac{1}{106111053} a^{19} - \frac{16}{106111053} a^{18} + \frac{13}{106111053} a^{17} + \frac{35}{106111053} a^{16} - \frac{74}{106111053} a^{15} - \frac{31}{106111053} a^{14} + \frac{253}{106111053} a^{13} - \frac{43178}{177147} a^{12} - \frac{1}{177147} a^{11} - \frac{160}{35370351} a^{10} + \frac{253}{11790117} a^{9} - \frac{31}{3930039} a^{8} - \frac{74}{1310013} a^{7} + \frac{35}{436671} a^{6} + \frac{13}{145557} a^{5} - \frac{16}{48519} a^{4} + \frac{1}{16173} a^{3} + \frac{5}{5391} a^{2} - \frac{2}{1797} a - \frac{1}{599}$
Class group and class number
$C_{35}$, which has order $35$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{5}{48519} a^{17} + \frac{1801}{48519} a^{4} \) (order $26$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 166366823.90883145 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{12}$ (as 24T2):
| An abelian group of order 24 |
| The 24 conjugacy class representatives for $C_2\times C_{12}$ |
| Character table for $C_2\times C_{12}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{8}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }^{2}$ | R | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{6}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{24}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 11 | Data not computed | ||||||
| 13 | Data not computed | ||||||