Properties

Label 23.23.611...809.1
Degree $23$
Signature $[23, 0]$
Discriminant $6.112\times 10^{36}$
Root discriminant \(39.76\)
Ramified prime $47$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_{23}$ (as 23T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^23 - x^22 - 22*x^21 + 21*x^20 + 210*x^19 - 190*x^18 - 1140*x^17 + 969*x^16 + 3876*x^15 - 3060*x^14 - 8568*x^13 + 6188*x^12 + 12376*x^11 - 8008*x^10 - 11440*x^9 + 6435*x^8 + 6435*x^7 - 3003*x^6 - 2002*x^5 + 715*x^4 + 286*x^3 - 66*x^2 - 12*x + 1)
 
gp: K = bnfinit(y^23 - y^22 - 22*y^21 + 21*y^20 + 210*y^19 - 190*y^18 - 1140*y^17 + 969*y^16 + 3876*y^15 - 3060*y^14 - 8568*y^13 + 6188*y^12 + 12376*y^11 - 8008*y^10 - 11440*y^9 + 6435*y^8 + 6435*y^7 - 3003*y^6 - 2002*y^5 + 715*y^4 + 286*y^3 - 66*y^2 - 12*y + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^23 - x^22 - 22*x^21 + 21*x^20 + 210*x^19 - 190*x^18 - 1140*x^17 + 969*x^16 + 3876*x^15 - 3060*x^14 - 8568*x^13 + 6188*x^12 + 12376*x^11 - 8008*x^10 - 11440*x^9 + 6435*x^8 + 6435*x^7 - 3003*x^6 - 2002*x^5 + 715*x^4 + 286*x^3 - 66*x^2 - 12*x + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^23 - x^22 - 22*x^21 + 21*x^20 + 210*x^19 - 190*x^18 - 1140*x^17 + 969*x^16 + 3876*x^15 - 3060*x^14 - 8568*x^13 + 6188*x^12 + 12376*x^11 - 8008*x^10 - 11440*x^9 + 6435*x^8 + 6435*x^7 - 3003*x^6 - 2002*x^5 + 715*x^4 + 286*x^3 - 66*x^2 - 12*x + 1)
 

\( x^{23} - x^{22} - 22 x^{21} + 21 x^{20} + 210 x^{19} - 190 x^{18} - 1140 x^{17} + 969 x^{16} + 3876 x^{15} + \cdots + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $23$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[23, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(6111571184724799803076702357055363809\) \(\medspace = 47^{22}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(39.76\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $47^{22/23}\approx 39.75556693193454$
Ramified primes:   \(47\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $23$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(47\)
Dirichlet character group:    $\lbrace$$\chi_{47}(1,·)$, $\chi_{47}(2,·)$, $\chi_{47}(3,·)$, $\chi_{47}(4,·)$, $\chi_{47}(6,·)$, $\chi_{47}(7,·)$, $\chi_{47}(8,·)$, $\chi_{47}(9,·)$, $\chi_{47}(12,·)$, $\chi_{47}(14,·)$, $\chi_{47}(16,·)$, $\chi_{47}(17,·)$, $\chi_{47}(18,·)$, $\chi_{47}(21,·)$, $\chi_{47}(24,·)$, $\chi_{47}(25,·)$, $\chi_{47}(27,·)$, $\chi_{47}(28,·)$, $\chi_{47}(32,·)$, $\chi_{47}(34,·)$, $\chi_{47}(36,·)$, $\chi_{47}(37,·)$, $\chi_{47}(42,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Yes
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $22$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a^{22}-21a^{20}+190a^{18}-969a^{16}+3060a^{14}-6188a^{12}+8008a^{10}-6435a^{8}+3003a^{6}-715a^{4}+66a^{2}-1$, $a^{11}-a^{10}-10a^{9}+9a^{8}+36a^{7}-28a^{6}-56a^{5}+35a^{4}+35a^{3}-15a^{2}-6a+1$, $a^{6}-6a^{4}+9a^{2}-2$, $a^{3}-3a$, $a^{9}-9a^{7}+27a^{5}-30a^{3}+9a$, $a^{5}-a^{4}-4a^{3}+3a^{2}+3a-1$, $a^{18}-18a^{16}+135a^{14}-546a^{12}+1287a^{10}-1782a^{8}+1386a^{6}-540a^{4}+81a^{2}-2$, $a^{19}-19a^{17}+152a^{15}-665a^{13}+1729a^{11}-2717a^{9}+2508a^{7}-1254a^{5}+285a^{3}-19a$, $a^{9}-a^{8}-8a^{7}+7a^{6}+21a^{5}-15a^{4}-20a^{3}+10a^{2}+5a-1$, $a^{6}-5a^{4}+6a^{2}-1$, $a^{3}-a^{2}-2a+1$, $a^{13}-a^{12}-12a^{11}+11a^{10}+55a^{9}-45a^{8}-120a^{7}+84a^{6}+126a^{5}-70a^{4}-56a^{3}+21a^{2}+7a-1$, $a^{4}-3a^{2}+1$, $a^{2}-a-1$, $a$, $a^{10}-a^{9}-9a^{8}+8a^{7}+28a^{6}-21a^{5}-35a^{4}+20a^{3}+15a^{2}-5a-1$, $a^{16}-15a^{14}+91a^{12}-286a^{10}+495a^{8}-462a^{6}+210a^{4}-36a^{2}+1$, $a^{3}-2a$, $a^{4}-4a^{2}+2$, $a^{14}-13a^{12}+66a^{10}-165a^{8}+210a^{6}-126a^{4}+28a^{2}-1$, $a^{8}-8a^{6}+20a^{4}-16a^{2}+2$, $a^{22}-a^{21}-21a^{20}+21a^{19}+189a^{18}-189a^{17}-951a^{16}+951a^{15}+2925a^{14}-2925a^{13}-5643a^{12}+5643a^{11}+6733a^{10}-6733a^{9}-4707a^{8}+4707a^{7}+1728a^{6}-1728a^{5}-274a^{4}+274a^{3}+12a^{2}-12a$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 68215743661.4 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{23}\cdot(2\pi)^{0}\cdot 68215743661.4 \cdot 1}{2\cdot\sqrt{6111571184724799803076702357055363809}}\cr\approx \mathstrut & 0.115735897897 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^23 - x^22 - 22*x^21 + 21*x^20 + 210*x^19 - 190*x^18 - 1140*x^17 + 969*x^16 + 3876*x^15 - 3060*x^14 - 8568*x^13 + 6188*x^12 + 12376*x^11 - 8008*x^10 - 11440*x^9 + 6435*x^8 + 6435*x^7 - 3003*x^6 - 2002*x^5 + 715*x^4 + 286*x^3 - 66*x^2 - 12*x + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^23 - x^22 - 22*x^21 + 21*x^20 + 210*x^19 - 190*x^18 - 1140*x^17 + 969*x^16 + 3876*x^15 - 3060*x^14 - 8568*x^13 + 6188*x^12 + 12376*x^11 - 8008*x^10 - 11440*x^9 + 6435*x^8 + 6435*x^7 - 3003*x^6 - 2002*x^5 + 715*x^4 + 286*x^3 - 66*x^2 - 12*x + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^23 - x^22 - 22*x^21 + 21*x^20 + 210*x^19 - 190*x^18 - 1140*x^17 + 969*x^16 + 3876*x^15 - 3060*x^14 - 8568*x^13 + 6188*x^12 + 12376*x^11 - 8008*x^10 - 11440*x^9 + 6435*x^8 + 6435*x^7 - 3003*x^6 - 2002*x^5 + 715*x^4 + 286*x^3 - 66*x^2 - 12*x + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^23 - x^22 - 22*x^21 + 21*x^20 + 210*x^19 - 190*x^18 - 1140*x^17 + 969*x^16 + 3876*x^15 - 3060*x^14 - 8568*x^13 + 6188*x^12 + 12376*x^11 - 8008*x^10 - 11440*x^9 + 6435*x^8 + 6435*x^7 - 3003*x^6 - 2002*x^5 + 715*x^4 + 286*x^3 - 66*x^2 - 12*x + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{23}$ (as 23T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 23
The 23 conjugacy class representatives for $C_{23}$
Character table for $C_{23}$ is not computed

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $23$ $23$ $23$ $23$ $23$ $23$ $23$ $23$ $23$ $23$ $23$ $23$ $23$ $23$ R $23$ $23$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(47\) Copy content Toggle raw display 47.23.22.1$x^{23} + 47$$23$$1$$22$$C_{23}$$[\ ]_{23}$