Normalized defining polynomial
\( x^{23} - x^{22} - 132 x^{21} + 269 x^{20} + 6722 x^{19} - 19118 x^{18} - 167488 x^{17} + 601226 x^{16} + 2127300 x^{15} - 9664345 x^{14} - 12698450 x^{13} + 83446410 x^{12} + 19888027 x^{11} - 390244377 x^{10} + 110929757 x^{9} + 994369765 x^{8} - 511651057 x^{7} - 1370318108 x^{6} + 775297206 x^{5} + 972267257 x^{4} - 466392148 x^{3} - 312747839 x^{2} + 85444683 x + 38737459 \)
Invariants
| Degree: | $23$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[23, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(542693874230042671882983450092579839839306394717839529=277^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $216.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $277$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(277\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{277}(256,·)$, $\chi_{277}(1,·)$, $\chi_{277}(131,·)$, $\chi_{277}(69,·)$, $\chi_{277}(264,·)$, $\chi_{277}(201,·)$, $\chi_{277}(203,·)$, $\chi_{277}(16,·)$, $\chi_{277}(273,·)$, $\chi_{277}(19,·)$, $\chi_{277}(84,·)$, $\chi_{277}(213,·)$, $\chi_{277}(218,·)$, $\chi_{277}(155,·)$, $\chi_{277}(157,·)$, $\chi_{277}(30,·)$, $\chi_{277}(27,·)$, $\chi_{277}(164,·)$, $\chi_{277}(169,·)$, $\chi_{277}(236,·)$, $\chi_{277}(175,·)$, $\chi_{277}(211,·)$, $\chi_{277}(52,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{1013} a^{21} - \frac{327}{1013} a^{20} + \frac{367}{1013} a^{19} - \frac{421}{1013} a^{18} + \frac{41}{1013} a^{17} + \frac{47}{1013} a^{16} + \frac{142}{1013} a^{15} - \frac{32}{1013} a^{14} + \frac{25}{1013} a^{13} + \frac{362}{1013} a^{12} + \frac{486}{1013} a^{11} - \frac{251}{1013} a^{10} + \frac{278}{1013} a^{9} + \frac{316}{1013} a^{8} + \frac{389}{1013} a^{7} + \frac{398}{1013} a^{6} - \frac{431}{1013} a^{5} + \frac{57}{1013} a^{4} - \frac{132}{1013} a^{3} + \frac{212}{1013} a^{2} - \frac{227}{1013} a - \frac{415}{1013}$, $\frac{1}{46337890549234016298171853702530849247972658950954890006735473863887995788008751327739} a^{22} - \frac{10515748538181309881151437316398131922250721372503825228361195713622046382414669758}{46337890549234016298171853702530849247972658950954890006735473863887995788008751327739} a^{21} - \frac{9262750842696334233313874233575406859264193138557553305157961269602227306979758913672}{46337890549234016298171853702530849247972658950954890006735473863887995788008751327739} a^{20} - \frac{2336234889593665803225998160382056290551003062029618818017279768752170193219081044896}{46337890549234016298171853702530849247972658950954890006735473863887995788008751327739} a^{19} - \frac{7448545303333453971189988367342905680122491869960027794022414472572639717355485043877}{46337890549234016298171853702530849247972658950954890006735473863887995788008751327739} a^{18} - \frac{1228155082069522763549217853616629560868489146954445182178642261841985699196098757054}{46337890549234016298171853702530849247972658950954890006735473863887995788008751327739} a^{17} + \frac{14790932328629458415830148987896101641493210518272821124689308049917816500994696752881}{46337890549234016298171853702530849247972658950954890006735473863887995788008751327739} a^{16} - \frac{16606398511390007372508321036683947251445295941982005771615138513305110468903909791307}{46337890549234016298171853702530849247972658950954890006735473863887995788008751327739} a^{15} - \frac{18845306050345569186292132251837098460303136416863523731867159045522469094638446821047}{46337890549234016298171853702530849247972658950954890006735473863887995788008751327739} a^{14} + \frac{4983269681705881165186670980322311381434422423231840094983142264649549448608676406919}{46337890549234016298171853702530849247972658950954890006735473863887995788008751327739} a^{13} - \frac{19394897448130012602457985571336336954644100154030189009205956579267298558835600727688}{46337890549234016298171853702530849247972658950954890006735473863887995788008751327739} a^{12} - \frac{816250505079287569436087382334046265751485425825176395096199715337252280202185115532}{46337890549234016298171853702530849247972658950954890006735473863887995788008751327739} a^{11} - \frac{8351248388359053695277025552028996903778922810327174107039253807303135431022593075849}{46337890549234016298171853702530849247972658950954890006735473863887995788008751327739} a^{10} + \frac{22802137051503419020610689469308228770053063508268828493229884816176001880360143440292}{46337890549234016298171853702530849247972658950954890006735473863887995788008751327739} a^{9} - \frac{5702456238633522521414508366376970022489041416521223700383493791074572666332333435216}{46337890549234016298171853702530849247972658950954890006735473863887995788008751327739} a^{8} + \frac{12607490638192053081673515000158142878576091510145385150713798439840773815861327086577}{46337890549234016298171853702530849247972658950954890006735473863887995788008751327739} a^{7} - \frac{5941471315445100325601392838531812081600245319755132390118650744172338214709153638677}{46337890549234016298171853702530849247972658950954890006735473863887995788008751327739} a^{6} - \frac{17868160330429865506375661306506015353069482955583304241593964652650253390458471080594}{46337890549234016298171853702530849247972658950954890006735473863887995788008751327739} a^{5} + \frac{2773627444529236465994298539702556863795798570852033171406535937575674343233890952092}{46337890549234016298171853702530849247972658950954890006735473863887995788008751327739} a^{4} - \frac{13436631819666901757476805677241762573304242809068136039275063826570971997760386358834}{46337890549234016298171853702530849247972658950954890006735473863887995788008751327739} a^{3} - \frac{19513464101539587219205642765385364405611334383580628700108318206561585602608045966070}{46337890549234016298171853702530849247972658950954890006735473863887995788008751327739} a^{2} + \frac{18982205009368513739690189252135484155071092905318144602749637382633258773159122730191}{46337890549234016298171853702530849247972658950954890006735473863887995788008751327739} a - \frac{5631540621346237655237554950801365452224068336437461380650510276202838666255693124773}{46337890549234016298171853702530849247972658950954890006735473863887995788008751327739}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $22$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 17443707994029808000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 23 |
| The 23 conjugacy class representatives for $C_{23}$ |
| Character table for $C_{23}$ is not computed |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 277 | Data not computed | ||||||