Normalized defining polynomial
\(x^{23} - x^{22} - 462 x^{21} + 519 x^{20} + 78046 x^{19} - 96292 x^{18} - 6163501 x^{17} + 7373917 x^{16} + 250455980 x^{15} - 290053856 x^{14} - 5501340108 x^{13} + 6875865393 x^{12} + 66926124686 x^{11} - 96263348909 x^{10} - 438046106473 x^{9} + 740824871406 x^{8} + 1383038185176 x^{7} - 2863260767644 x^{6} - 1570567685623 x^{5} + 5193710248505 x^{4} - 862947136357 x^{3} - 3368621429671 x^{2} + 2154713129200 x - 341763031283\)
Invariants
Degree: | $23$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[23, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(477\!\cdots\!489\)\(\medspace = 967^{22}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $717.18$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $967$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Gal(K/\Q)|$: | $23$ | ||
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(967\) | ||
Dirichlet character group: | $\lbrace$$\chi_{967}(1,·)$, $\chi_{967}(196,·)$, $\chi_{967}(133,·)$, $\chi_{967}(641,·)$, $\chi_{967}(72,·)$, $\chi_{967}(714,·)$, $\chi_{967}(332,·)$, $\chi_{967}(916,·)$, $\chi_{967}(667,·)$, $\chi_{967}(474,·)$, $\chi_{967}(283,·)$, $\chi_{967}(157,·)$, $\chi_{967}(926,·)$, $\chi_{967}(69,·)$, $\chi_{967}(795,·)$, $\chi_{967}(873,·)$, $\chi_{967}(349,·)$, $\chi_{967}(696,·)$, $\chi_{967}(953,·)$, $\chi_{967}(187,·)$, $\chi_{967}(893,·)$, $\chi_{967}(574,·)$, $\chi_{967}(703,·)$$\rbrace$ | ||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{151} a^{19} - \frac{69}{151} a^{18} - \frac{19}{151} a^{17} - \frac{67}{151} a^{16} + \frac{69}{151} a^{15} - \frac{14}{151} a^{14} - \frac{60}{151} a^{13} + \frac{44}{151} a^{12} + \frac{21}{151} a^{11} - \frac{1}{151} a^{10} + \frac{49}{151} a^{9} - \frac{55}{151} a^{8} + \frac{30}{151} a^{7} + \frac{16}{151} a^{6} + \frac{37}{151} a^{5} - \frac{70}{151} a^{3} - \frac{69}{151} a^{2} + \frac{56}{151} a$, $\frac{1}{151} a^{20} + \frac{52}{151} a^{18} - \frac{19}{151} a^{17} - \frac{24}{151} a^{16} + \frac{66}{151} a^{15} + \frac{31}{151} a^{14} - \frac{19}{151} a^{13} + \frac{37}{151} a^{12} - \frac{62}{151} a^{11} - \frac{20}{151} a^{10} + \frac{4}{151} a^{9} + \frac{10}{151} a^{8} - \frac{28}{151} a^{7} - \frac{67}{151} a^{6} - \frac{14}{151} a^{5} - \frac{70}{151} a^{4} - \frac{67}{151} a^{3} - \frac{24}{151} a^{2} - \frac{62}{151} a$, $\frac{1}{151} a^{21} - \frac{55}{151} a^{18} + \frac{58}{151} a^{17} - \frac{74}{151} a^{16} + \frac{67}{151} a^{15} - \frac{46}{151} a^{14} - \frac{14}{151} a^{13} + \frac{66}{151} a^{12} - \frac{55}{151} a^{11} + \frac{56}{151} a^{10} + \frac{29}{151} a^{9} - \frac{37}{151} a^{8} + \frac{34}{151} a^{7} + \frac{60}{151} a^{6} - \frac{31}{151} a^{5} - \frac{67}{151} a^{4} - \frac{8}{151} a^{3} + \frac{53}{151} a^{2} - \frac{43}{151} a$, $\frac{1}{7154323715164870718340959796293814827822786071343889568069877412997898783312644773754880255607615432246055958198527722361331936336527} a^{22} + \frac{16628712852238660183462596690451762642774709094691090503876865245631254247153169567615188244391403457788080302046329821605490491482}{7154323715164870718340959796293814827822786071343889568069877412997898783312644773754880255607615432246055958198527722361331936336527} a^{21} - \frac{13174214121051995752605890637267926504693047638552770166635777246755529214638756009294680176177683568500897450204603918414890455758}{7154323715164870718340959796293814827822786071343889568069877412997898783312644773754880255607615432246055958198527722361331936336527} a^{20} + \frac{65379440333081034237103818080513992526880261642055610528049128773538122714728141057701903833565552777260644728380330185724252410}{47379627252747488200933508584727250515382689214197944159403161675482773399421488567913114275547122067854675219857799485836635339977} a^{19} + \frac{3488806919007788310244343147733619686105187272078891866044874899188936047114583640328235714725766496555043280885412974591417896204374}{7154323715164870718340959796293814827822786071343889568069877412997898783312644773754880255607615432246055958198527722361331936336527} a^{18} - \frac{1482487552840309506682949891290571272822564292947515520226550274136879018149730172865762027302732121570007245835668956882698525861947}{7154323715164870718340959796293814827822786071343889568069877412997898783312644773754880255607615432246055958198527722361331936336527} a^{17} - \frac{1238813310354266810703198055710951961892436353500936503352354953971681317269784567346357924778280409915810023558753681977713733494690}{7154323715164870718340959796293814827822786071343889568069877412997898783312644773754880255607615432246055958198527722361331936336527} a^{16} + \frac{3130337774632094618337163120182704094722992561532257600219772686568850508451119572870191873908943915887031447980803776510083831344895}{7154323715164870718340959796293814827822786071343889568069877412997898783312644773754880255607615432246055958198527722361331936336527} a^{15} - \frac{3163972446470427666290304452506735933341359464706600401936350030787450191448004099828577295584617650331772463783201287659598001436089}{7154323715164870718340959796293814827822786071343889568069877412997898783312644773754880255607615432246055958198527722361331936336527} a^{14} - \frac{1085761051516029188399918260650207827280414160916802943536994178817933567209819129628274045617171053215504223292125521783133342459288}{7154323715164870718340959796293814827822786071343889568069877412997898783312644773754880255607615432246055958198527722361331936336527} a^{13} + \frac{177566274023243933724134944556160928883254064910282529839406854865159927532740226280012638924539244789085914614842175558426198582799}{7154323715164870718340959796293814827822786071343889568069877412997898783312644773754880255607615432246055958198527722361331936336527} a^{12} + \frac{184299170468054584700879575112866870553709471234140481230972771964305580803632204771740018733851018763782245571237885933069287816818}{7154323715164870718340959796293814827822786071343889568069877412997898783312644773754880255607615432246055958198527722361331936336527} a^{11} - \frac{743618118452191929350977954033913433441182211696076435895215026922079543928572253648476354243531429737294631544691976480127872288374}{7154323715164870718340959796293814827822786071343889568069877412997898783312644773754880255607615432246055958198527722361331936336527} a^{10} - \frac{3242897351517269114278316713726685424256235571463192073305397685629873028668388541757507666113995512393734942121315803636681858120140}{7154323715164870718340959796293814827822786071343889568069877412997898783312644773754880255607615432246055958198527722361331936336527} a^{9} - \frac{941654260663993294844745469427422120469251489742997941291350672614876649683488534533926506434971646753749893495546347063739074222279}{7154323715164870718340959796293814827822786071343889568069877412997898783312644773754880255607615432246055958198527722361331936336527} a^{8} - \frac{1723372363286534101632840855610039607886207739413523287595367515575152607082138044283849735811183708939615379417010403927032610050323}{7154323715164870718340959796293814827822786071343889568069877412997898783312644773754880255607615432246055958198527722361331936336527} a^{7} + \frac{1521842667986888192012051223933668701304909172601270669621751651198646612105059451858196437948497131538215255215739144287428229862731}{7154323715164870718340959796293814827822786071343889568069877412997898783312644773754880255607615432246055958198527722361331936336527} a^{6} - \frac{2718725749964085389924239855257357862304182618639408578967997335542761968931808134697973276742045113833567940189098885005441928968651}{7154323715164870718340959796293814827822786071343889568069877412997898783312644773754880255607615432246055958198527722361331936336527} a^{5} - \frac{1602215066837710415196705886123759289164195502763383783426708395918116927325050991289940773819598888111132749644569686126814569567989}{7154323715164870718340959796293814827822786071343889568069877412997898783312644773754880255607615432246055958198527722361331936336527} a^{4} + \frac{2758631331660170852541202980211167858075771446261008440006362616547676955087907279722158534933806574024583150818122723483422200772915}{7154323715164870718340959796293814827822786071343889568069877412997898783312644773754880255607615432246055958198527722361331936336527} a^{3} - \frac{3392135399519242521127692946512978267712035327602154000091765585374276046427687355436954595944791617465937818938441864161584634887708}{7154323715164870718340959796293814827822786071343889568069877412997898783312644773754880255607615432246055958198527722361331936336527} a^{2} + \frac{2186642097582517307216206524792540190446646807697657697519768404658094608416828062613777861031182068662110810825267255877939645628444}{7154323715164870718340959796293814827822786071343889568069877412997898783312644773754880255607615432246055958198527722361331936336527} a + \frac{13030198824292055741350954289649859588160279691210392225454324302956280993334412631362220213078493344784404704900972231722575502}{261765896424019271828361925882470997322556294001093614140348959533053996681886677170790686605232718606931907292032041358213454917}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $22$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) ![]() | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 27464009362584775000000000 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A cyclic group of order 23 |
The 23 conjugacy class representatives for $C_{23}$ |
Character table for $C_{23}$ is not computed |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
967 | Data not computed |