Normalized defining polynomial
\(x^{23} - x^{22} - 220 x^{21} + 87 x^{20} + 19764 x^{19} + 7502 x^{18} - 942100 x^{17} - 1247222 x^{16} + 25503060 x^{15} + 62076437 x^{14} - 368245290 x^{13} - 1464919087 x^{12} + 1795768610 x^{11} + 16428532486 x^{10} + 16509241674 x^{9} - 60887740509 x^{8} - 181108379413 x^{7} - 148388500129 x^{6} + 88587002490 x^{5} + 252590462192 x^{4} + 171337144724 x^{3} + 31220491402 x^{2} - 10221385976 x - 3012210881\)
Invariants
Degree: | $23$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[23, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(39941131008096550428701851231676209894223228004485139129721\)\(\medspace = 461^{22}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $353.09$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $461$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Gal(K/\Q)|$: | $23$ | ||
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(461\) | ||
Dirichlet character group: | $\lbrace$$\chi_{461}(1,·)$, $\chi_{461}(322,·)$, $\chi_{461}(196,·)$, $\chi_{461}(262,·)$, $\chi_{461}(292,·)$, $\chi_{461}(14,·)$, $\chi_{461}(400,·)$, $\chi_{461}(23,·)$, $\chi_{461}(68,·)$, $\chi_{461}(348,·)$, $\chi_{461}(30,·)$, $\chi_{461}(416,·)$, $\chi_{461}(33,·)$, $\chi_{461}(420,·)$, $\chi_{461}(229,·)$, $\chi_{461}(167,·)$, $\chi_{461}(298,·)$, $\chi_{461}(359,·)$, $\chi_{461}(181,·)$, $\chi_{461}(439,·)$, $\chi_{461}(440,·)$, $\chi_{461}(441,·)$, $\chi_{461}(153,·)$$\rbrace$ | ||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{347} a^{21} + \frac{173}{347} a^{20} - \frac{98}{347} a^{19} + \frac{107}{347} a^{18} - \frac{144}{347} a^{17} - \frac{49}{347} a^{16} - \frac{100}{347} a^{15} + \frac{15}{347} a^{14} + \frac{49}{347} a^{13} + \frac{82}{347} a^{12} + \frac{4}{347} a^{11} - \frac{154}{347} a^{10} - \frac{47}{347} a^{9} - \frac{104}{347} a^{8} - \frac{40}{347} a^{7} + \frac{167}{347} a^{6} + \frac{67}{347} a^{5} - \frac{11}{347} a^{4} + \frac{49}{347} a^{3} - \frac{15}{347} a^{2} - \frac{115}{347} a$, $\frac{1}{888240951837481757759049950490502194483428549272408564095621684681177376743954250513895591541514679} a^{22} - \frac{698207311068754356132058721093456193119615987896004367573240188097806935588444588639909440176177}{888240951837481757759049950490502194483428549272408564095621684681177376743954250513895591541514679} a^{21} + \frac{358270334149022715447634482874439805055485214839257229207367778931503368648109405786377034188212574}{888240951837481757759049950490502194483428549272408564095621684681177376743954250513895591541514679} a^{20} + \frac{221598037027128510909850346479511962820212385873848134750782579656891178988033023794663067983664622}{888240951837481757759049950490502194483428549272408564095621684681177376743954250513895591541514679} a^{19} - \frac{370163384272409444263548922394425149840571066875260496508467940450069396761553522093933686041652033}{888240951837481757759049950490502194483428549272408564095621684681177376743954250513895591541514679} a^{18} + \frac{354998821282110700922994683602097618883478426036235050494410155607652506801716264571552407496699497}{888240951837481757759049950490502194483428549272408564095621684681177376743954250513895591541514679} a^{17} - \frac{30853291631755867121053968702779003111330281485927515853855112024449722978258545849930294298256284}{888240951837481757759049950490502194483428549272408564095621684681177376743954250513895591541514679} a^{16} - \frac{211605859336090071093890397231421727068726080824119335673111864126691888195423897710878935817941044}{888240951837481757759049950490502194483428549272408564095621684681177376743954250513895591541514679} a^{15} + \frac{315298847393384095103830821782714065448680835392376302460579444912640024481544241782537604823973880}{888240951837481757759049950490502194483428549272408564095621684681177376743954250513895591541514679} a^{14} + \frac{60633700590527972098735835240730866782309593710624489177720920893550495611942118136103463850207385}{888240951837481757759049950490502194483428549272408564095621684681177376743954250513895591541514679} a^{13} - \frac{182478179842682133504405291158951142711208756913820185561179258823843526062819175284437994886688131}{888240951837481757759049950490502194483428549272408564095621684681177376743954250513895591541514679} a^{12} - \frac{440337404088736104095558875471995004523078680470077566786137016021238383136397302059417440296480183}{888240951837481757759049950490502194483428549272408564095621684681177376743954250513895591541514679} a^{11} - \frac{365646142789714127271614280323185828657431510452462865123237268797244614399104645198824862870375616}{888240951837481757759049950490502194483428549272408564095621684681177376743954250513895591541514679} a^{10} - \frac{294237939104761202256800239016152693717743826036858147816353431910997647243415912373553912845357533}{888240951837481757759049950490502194483428549272408564095621684681177376743954250513895591541514679} a^{9} - \frac{246897761915466300094622757330679535808940979199107947487499962337240697210910857567490234400169907}{888240951837481757759049950490502194483428549272408564095621684681177376743954250513895591541514679} a^{8} + \frac{160411442535133355758160500067974842460249060835772950762684144056142721457903762542270613553082774}{888240951837481757759049950490502194483428549272408564095621684681177376743954250513895591541514679} a^{7} - \frac{156005517562328268735759836217930469643630047434073455393320842610109371161874434288194108554530640}{888240951837481757759049950490502194483428549272408564095621684681177376743954250513895591541514679} a^{6} - \frac{381133488358997592011226987997314516195500984255481523826702558594158985722888859963650303980741153}{888240951837481757759049950490502194483428549272408564095621684681177376743954250513895591541514679} a^{5} + \frac{138278096758643531922506304329010015671409873340176053867635785279712649081479818357225505243218057}{888240951837481757759049950490502194483428549272408564095621684681177376743954250513895591541514679} a^{4} + \frac{259178229215160251070117203830225292618835436270453459186168058807289245846384985796645695861516949}{888240951837481757759049950490502194483428549272408564095621684681177376743954250513895591541514679} a^{3} + \frac{440824067025862853823447131006299008607425627124502298281148452219723996739344195461539449317450625}{888240951837481757759049950490502194483428549272408564095621684681177376743954250513895591541514679} a^{2} - \frac{169187442196761164624713137158193221114538248590768579771516824867060863793520473943199429651586303}{888240951837481757759049950490502194483428549272408564095621684681177376743954250513895591541514679} a - \frac{833593163811045124096867139281328571697668634206701028895618248688548294717666551928976795911494}{2559772195497065584320028675765136007156854608854203354742425604268522699550300433757624183116757}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $22$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) ![]() | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 5504325396653325000000 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A cyclic group of order 23 |
The 23 conjugacy class representatives for $C_{23}$ |
Character table for $C_{23}$ is not computed |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
461 | Data not computed |