Normalized defining polynomial
\( x^{23} - 299 x^{21} + 38870 x^{19} - 2880267 x^{17} + 134008212 x^{15} - 4064915764 x^{13} + 80820089896 x^{11} - 1031899362065 x^{9} + 8048815024107 x^{7} - 34878198437797 x^{5} + 69756396875594 x^{3} - 41219689062851 x - 12722733426052 \)
Invariants
| Degree: | $23$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[23, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(281289734904574222488347652007286105552626963997840714384801792=2^{22}\cdot 13^{22}\cdot 23^{23}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $519.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{87263423403} a^{12} + \frac{2541706348}{6712571031} a^{11} - \frac{4}{2237523677} a^{10} - \frac{985172090}{6712571031} a^{9} + \frac{234}{2237523677} a^{8} - \frac{2471619568}{6712571031} a^{7} - \frac{18928}{6712571031} a^{6} + \frac{2528776924}{6712571031} a^{5} + \frac{76895}{2237523677} a^{4} + \frac{1450906678}{6712571031} a^{3} - \frac{342732}{2237523677} a^{2} + \frac{1597699462}{6712571031} a + \frac{742586}{6712571031}$, $\frac{1}{87263423403} a^{13} - \frac{13}{6712571031} a^{11} - \frac{520672631}{6712571031} a^{10} + \frac{845}{6712571031} a^{9} + \frac{561731720}{6712571031} a^{8} - \frac{8788}{2237523677} a^{7} + \frac{1291490864}{6712571031} a^{6} + \frac{399854}{6712571031} a^{5} - \frac{1929239801}{6712571031} a^{4} - \frac{2599051}{6712571031} a^{3} + \frac{2471202160}{6712571031} a^{2} + \frac{4826809}{6712571031} a + \frac{114978166}{6712571031}$, $\frac{1}{87263423403} a^{14} - \frac{576845803}{6712571031} a^{11} - \frac{1183}{6712571031} a^{10} + \frac{627308095}{2237523677} a^{9} + \frac{30758}{2237523677} a^{8} - \frac{232812206}{6712571031} a^{7} - \frac{2798978}{6712571031} a^{6} + \frac{2542085402}{6712571031} a^{5} + \frac{36386714}{6712571031} a^{4} - \frac{690697405}{6712571031} a^{3} - \frac{168938315}{6712571031} a^{2} + \frac{1623346004}{6712571031} a + \frac{125497034}{6712571031}$, $\frac{1}{87263423403} a^{15} - \frac{455}{2237523677} a^{11} - \frac{280865860}{2237523677} a^{10} + \frac{118300}{6712571031} a^{9} + \frac{1406297668}{6712571031} a^{8} - \frac{1384110}{2237523677} a^{7} - \frac{1129133495}{6712571031} a^{6} + \frac{22391824}{2237523677} a^{5} + \frac{1679178269}{6712571031} a^{4} - \frac{454833925}{6712571031} a^{3} - \frac{500867704}{6712571031} a^{2} + \frac{289608540}{2237523677} a + \frac{788313119}{6712571031}$, $\frac{1}{87263423403} a^{16} - \frac{9403203}{2237523677} a^{11} - \frac{94640}{6712571031} a^{10} - \frac{937474658}{6712571031} a^{9} + \frac{2768220}{2237523677} a^{8} - \frac{79251101}{6712571031} a^{7} - \frac{89567296}{2237523677} a^{6} + \frac{1288352414}{6712571031} a^{5} - \frac{3073899631}{6712571031} a^{4} + \frac{3128229521}{6712571031} a^{3} + \frac{920400231}{2237523677} a^{2} - \frac{1934768635}{6712571031} a - \frac{82651164}{2237523677}$, $\frac{1}{87263423403} a^{17} - \frac{114920}{6712571031} a^{11} + \frac{1374397369}{6712571031} a^{10} + \frac{3734900}{2237523677} a^{9} + \frac{2283941455}{6712571031} a^{8} - \frac{139834656}{2237523677} a^{7} + \frac{717569492}{6712571031} a^{6} + \frac{356847689}{6712571031} a^{5} + \frac{2533003973}{6712571031} a^{4} - \frac{748484861}{2237523677} a^{3} - \frac{1775004004}{6712571031} a^{2} + \frac{676412192}{2237523677} a + \frac{831686241}{2237523677}$, $\frac{1}{87263423403} a^{18} + \frac{511271061}{2237523677} a^{11} - \frac{2240940}{2237523677} a^{10} - \frac{124935618}{2237523677} a^{9} + \frac{209751984}{2237523677} a^{8} - \frac{663836697}{2237523677} a^{7} - \frac{356847689}{2237523677} a^{6} - \frac{1283003066}{6712571031} a^{5} + \frac{15861812}{2237523677} a^{4} - \frac{1821385520}{6712571031} a^{3} + \frac{1041435505}{2237523677} a^{2} - \frac{1411891954}{6712571031} a + \frac{1819560445}{6712571031}$, $\frac{1}{87263423403} a^{19} - \frac{2838524}{2237523677} a^{11} - \frac{917502474}{2237523677} a^{10} + \frac{295206496}{2237523677} a^{9} + \frac{950850839}{2237523677} a^{8} - \frac{325434959}{2237523677} a^{7} + \frac{617840671}{6712571031} a^{6} + \frac{419984043}{2237523677} a^{5} + \frac{603758491}{6712571031} a^{4} - \frac{153958152}{2237523677} a^{3} + \frac{3313701983}{6712571031} a^{2} + \frac{403517320}{6712571031} a - \frac{764722372}{2237523677}$, $\frac{1}{87263423403} a^{20} - \frac{112465016}{2237523677} a^{11} - \frac{147603248}{2237523677} a^{10} - \frac{55798128}{2237523677} a^{9} + \frac{966174618}{2237523677} a^{8} + \frac{3265945810}{6712571031} a^{7} + \frac{68801731}{2237523677} a^{6} - \frac{905636900}{6712571031} a^{5} + \frac{769790760}{2237523677} a^{4} - \frac{2808196765}{6712571031} a^{3} + \frac{1668604531}{6712571031} a^{2} + \frac{513380591}{2237523677} a - \frac{926092387}{2237523677}$, $\frac{1}{87263423403} a^{21} - \frac{193729263}{2237523677} a^{11} + \frac{299848792}{2237523677} a^{10} + \frac{849623732}{2237523677} a^{9} + \frac{1263050629}{6712571031} a^{8} - \frac{583123228}{2237523677} a^{7} - \frac{602216564}{6712571031} a^{6} - \frac{620963081}{2237523677} a^{5} + \frac{206438921}{6712571031} a^{4} + \frac{3012422929}{6712571031} a^{3} + \frac{573469888}{2237523677} a^{2} - \frac{300716057}{2237523677} a + \frac{826750271}{2237523677}$, $\frac{1}{87263423403} a^{22} + \frac{424325214}{2237523677} a^{11} - \frac{284333495}{2237523677} a^{10} + \frac{1563233839}{6712571031} a^{9} - \frac{253573920}{2237523677} a^{8} - \frac{2786601422}{6712571031} a^{7} + \frac{23604572}{2237523677} a^{6} - \frac{443088292}{6712571031} a^{5} - \frac{2514547238}{6712571031} a^{4} + \frac{26741345}{2237523677} a^{3} + \frac{1070352950}{2237523677} a^{2} - \frac{884288665}{2237523677} a - \frac{1114523376}{2237523677}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $22$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3930853533530000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 506 |
| The 23 conjugacy class representatives for $F_{23}$ |
| Character table for $F_{23}$ is not computed |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 46 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $22{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | $22{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | R | $22{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | $22{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | $22{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | $22{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | $22{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 13 | Data not computed | ||||||
| 23 | Data not computed | ||||||