Normalized defining polynomial
\( x^{23} - 115 x^{21} + 5750 x^{19} - 163875 x^{17} + 2932500 x^{15} - 34212500 x^{13} + 261625000 x^{11} - 1284765625 x^{9} + 3854296875 x^{7} - 6423828125 x^{5} + 4941406250 x^{3} - 1123046875 x - 218280250 \)
Invariants
| Degree: | $23$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[23, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(208804679998479120343550329105670000000000000000000000=2^{22}\cdot 5^{22}\cdot 23^{23}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $208.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8}$, $\frac{1}{5} a^{9}$, $\frac{1}{5} a^{10}$, $\frac{1}{5} a^{11}$, $\frac{1}{122390} a^{12} - \frac{6923}{122390} a^{11} - \frac{6}{12239} a^{10} - \frac{10883}{122390} a^{9} + \frac{135}{12239} a^{8} - \frac{2712}{12239} a^{7} - \frac{1400}{12239} a^{6} + \frac{10743}{24478} a^{5} - \frac{11353}{24478} a^{4} - \frac{10393}{24478} a^{3} + \frac{989}{12239} a^{2} + \frac{10393}{24478} a + \frac{3125}{12239}$, $\frac{1}{122390} a^{13} - \frac{13}{24478} a^{11} - \frac{10137}{122390} a^{10} + \frac{325}{24478} a^{9} - \frac{3594}{61195} a^{8} - \frac{1950}{12239} a^{7} - \frac{11559}{24478} a^{6} - \frac{864}{12239} a^{5} - \frac{4177}{12239} a^{4} - \frac{7919}{24478} a^{3} - \frac{3593}{24478} a^{2} - \frac{8331}{24478} a - \frac{4177}{12239}$, $\frac{1}{122390} a^{14} + \frac{495}{12239} a^{11} - \frac{455}{24478} a^{10} - \frac{4721}{122390} a^{9} - \frac{2592}{61195} a^{8} + \frac{3051}{24478} a^{7} + \frac{6048}{12239} a^{6} + \frac{4557}{24478} a^{5} - \frac{5762}{12239} a^{4} + \frac{3123}{12239} a^{3} - \frac{2151}{24478} a^{2} + \frac{6285}{24478} a - \frac{4938}{12239}$, $\frac{1}{122390} a^{15} - \frac{525}{24478} a^{11} - \frac{1457}{122390} a^{10} - \frac{5206}{61195} a^{9} - \frac{9229}{122390} a^{8} + \frac{4265}{12239} a^{7} + \frac{10009}{24478} a^{6} + \frac{660}{12239} a^{5} + \frac{1054}{12239} a^{4} - \frac{9557}{24478} a^{3} + \frac{6385}{24478} a^{2} - \frac{1235}{12239} a + \frac{1346}{12239}$, $\frac{1}{611950} a^{16} + \frac{746}{12239} a^{11} + \frac{5239}{61195} a^{10} + \frac{264}{12239} a^{9} + \frac{3709}{61195} a^{8} + \frac{3641}{24478} a^{7} - \frac{528}{12239} a^{6} + \frac{5661}{24478} a^{5} + \frac{2750}{12239} a^{4} + \frac{1773}{12239} a^{3} + \frac{4940}{12239} a^{2} + \frac{3165}{24478} a + \frac{599}{12239}$, $\frac{1}{611950} a^{17} + \frac{3739}{61195} a^{11} + \frac{4818}{61195} a^{10} + \frac{536}{61195} a^{9} + \frac{7663}{122390} a^{8} - \frac{75}{12239} a^{7} - \frac{10551}{24478} a^{6} + \frac{1846}{12239} a^{5} + \frac{1523}{12239} a^{4} - \frac{2322}{12239} a^{3} + \frac{7519}{24478} a^{2} - \frac{4378}{12239} a + \frac{2795}{12239}$, $\frac{1}{611950} a^{18} + \frac{886}{12239} a^{11} + \frac{4574}{61195} a^{10} + \frac{1387}{122390} a^{9} - \frac{5557}{61195} a^{8} - \frac{9925}{24478} a^{7} - \frac{5538}{12239} a^{6} + \frac{1844}{12239} a^{5} + \frac{1693}{12239} a^{4} + \frac{8723}{24478} a^{3} + \frac{4475}{12239} a^{2} + \frac{2193}{12239} a - \frac{4499}{12239}$, $\frac{1}{611950} a^{19} + \frac{506}{12239} a^{11} - \frac{5529}{122390} a^{10} - \frac{3288}{61195} a^{9} + \frac{8073}{122390} a^{8} - \frac{2375}{12239} a^{7} - \frac{4502}{12239} a^{6} - \frac{4565}{12239} a^{5} - \frac{8277}{24478} a^{4} + \frac{2347}{12239} a^{3} + \frac{2777}{12239} a^{2} - \frac{2371}{12239} a - \frac{2882}{12239}$, $\frac{1}{611950} a^{20} - \frac{3167}{122390} a^{11} + \frac{1644}{61195} a^{10} + \frac{553}{122390} a^{9} - \frac{91}{12239} a^{8} - \frac{1701}{12239} a^{7} + \frac{5293}{12239} a^{6} - \frac{2219}{24478} a^{5} + \frac{504}{12239} a^{4} - \frac{4544}{12239} a^{3} - \frac{960}{12239} a^{2} + \frac{4439}{12239} a + \frac{288}{12239}$, $\frac{1}{611950} a^{21} + \frac{2087}{24478} a^{11} + \frac{6357}{122390} a^{10} - \frac{2347}{122390} a^{9} - \frac{366}{61195} a^{8} - \frac{4072}{12239} a^{7} - \frac{8783}{24478} a^{6} - \frac{331}{24478} a^{5} - \frac{5857}{24478} a^{4} + \frac{6359}{24478} a^{3} + \frac{3418}{12239} a^{2} - \frac{7703}{24478} a - \frac{4476}{12239}$, $\frac{1}{611950} a^{22} - \frac{5597}{61195} a^{11} + \frac{11803}{122390} a^{10} + \frac{9931}{122390} a^{9} - \frac{2082}{61195} a^{8} - \frac{2479}{24478} a^{7} - \frac{9063}{24478} a^{6} + \frac{89}{12239} a^{5} + \frac{697}{12239} a^{4} - \frac{4227}{24478} a^{3} + \frac{11299}{24478} a^{2} + \frac{2111}{24478} a - \frac{4679}{12239}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $22$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 108577580716000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 506 |
| The 23 conjugacy class representatives for $F_{23}$ |
| Character table for $F_{23}$ is not computed |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 46 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $22{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | $22{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | $22{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | $22{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | $22{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | $22{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 23 | Data not computed | ||||||