Properties

Label 23.23.161...641.1
Degree $23$
Signature $[23, 0]$
Discriminant $1.615\times 10^{64}$
Root discriminant \(618.96\)
Ramified prime $829$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_{23}$ (as 23T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^23 - x^22 - 396*x^21 + 517*x^20 + 58242*x^19 - 89048*x^18 - 4136665*x^17 + 6675371*x^16 + 155317993*x^15 - 248917597*x^14 - 3168505860*x^13 + 4803054368*x^12 + 34789513687*x^11 - 47690452504*x^10 - 193631555469*x^9 + 225956060874*x^8 + 483028561517*x^7 - 415966978205*x^6 - 465412635150*x^5 + 267147031000*x^4 + 115014666875*x^3 - 62643096875*x^2 - 1127109375*x + 2017578125)
 
gp: K = bnfinit(y^23 - y^22 - 396*y^21 + 517*y^20 + 58242*y^19 - 89048*y^18 - 4136665*y^17 + 6675371*y^16 + 155317993*y^15 - 248917597*y^14 - 3168505860*y^13 + 4803054368*y^12 + 34789513687*y^11 - 47690452504*y^10 - 193631555469*y^9 + 225956060874*y^8 + 483028561517*y^7 - 415966978205*y^6 - 465412635150*y^5 + 267147031000*y^4 + 115014666875*y^3 - 62643096875*y^2 - 1127109375*y + 2017578125, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^23 - x^22 - 396*x^21 + 517*x^20 + 58242*x^19 - 89048*x^18 - 4136665*x^17 + 6675371*x^16 + 155317993*x^15 - 248917597*x^14 - 3168505860*x^13 + 4803054368*x^12 + 34789513687*x^11 - 47690452504*x^10 - 193631555469*x^9 + 225956060874*x^8 + 483028561517*x^7 - 415966978205*x^6 - 465412635150*x^5 + 267147031000*x^4 + 115014666875*x^3 - 62643096875*x^2 - 1127109375*x + 2017578125);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^23 - x^22 - 396*x^21 + 517*x^20 + 58242*x^19 - 89048*x^18 - 4136665*x^17 + 6675371*x^16 + 155317993*x^15 - 248917597*x^14 - 3168505860*x^13 + 4803054368*x^12 + 34789513687*x^11 - 47690452504*x^10 - 193631555469*x^9 + 225956060874*x^8 + 483028561517*x^7 - 415966978205*x^6 - 465412635150*x^5 + 267147031000*x^4 + 115014666875*x^3 - 62643096875*x^2 - 1127109375*x + 2017578125)
 

\( x^{23} - x^{22} - 396 x^{21} + 517 x^{20} + 58242 x^{19} - 89048 x^{18} - 4136665 x^{17} + \cdots + 2017578125 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $23$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[23, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(16151009482177927765006229664562804196212236775629575713829087641\) \(\medspace = 829^{22}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(618.96\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $829^{22/23}\approx 618.9575364749112$
Ramified primes:   \(829\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $23$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(829\)
Dirichlet character group:    $\lbrace$$\chi_{829}(1,·)$, $\chi_{829}(69,·)$, $\chi_{829}(649,·)$, $\chi_{829}(11,·)$, $\chi_{829}(206,·)$, $\chi_{829}(15,·)$, $\chi_{829}(144,·)$, $\chi_{829}(121,·)$, $\chi_{829}(603,·)$, $\chi_{829}(157,·)$, $\chi_{829}(608,·)$, $\chi_{829}(225,·)$, $\chi_{829}(507,·)$, $\chi_{829}(548,·)$, $\chi_{829}(165,·)$, $\chi_{829}(616,·)$, $\chi_{829}(817,·)$, $\chi_{829}(755,·)$, $\chi_{829}(502,·)$, $\chi_{829}(759,·)$, $\chi_{829}(56,·)$, $\chi_{829}(697,·)$, $\chi_{829}(59,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{5}a^{5}-\frac{1}{5}a$, $\frac{1}{5}a^{6}-\frac{1}{5}a^{2}$, $\frac{1}{5}a^{7}-\frac{1}{5}a^{3}$, $\frac{1}{5}a^{8}-\frac{1}{5}a^{4}$, $\frac{1}{25}a^{9}-\frac{2}{25}a^{8}-\frac{1}{25}a^{7}+\frac{2}{25}a^{6}-\frac{1}{25}a^{5}-\frac{8}{25}a^{4}-\frac{4}{25}a^{3}+\frac{8}{25}a^{2}+\frac{1}{5}a$, $\frac{1}{25}a^{10}-\frac{2}{25}a^{6}+\frac{1}{25}a^{2}$, $\frac{1}{25}a^{11}-\frac{2}{25}a^{7}+\frac{1}{25}a^{3}$, $\frac{1}{125}a^{12}+\frac{2}{125}a^{11}-\frac{1}{125}a^{10}+\frac{2}{125}a^{9}-\frac{1}{125}a^{8}-\frac{6}{125}a^{7}-\frac{9}{125}a^{6}+\frac{8}{125}a^{5}-\frac{4}{25}a^{4}-\frac{6}{125}a^{3}+\frac{11}{25}a^{2}+\frac{1}{5}a$, $\frac{1}{625}a^{13}-\frac{1}{625}a^{10}-\frac{39}{625}a^{8}+\frac{13}{625}a^{7}-\frac{29}{625}a^{6}+\frac{9}{625}a^{5}+\frac{269}{625}a^{4}+\frac{277}{625}a^{3}-\frac{9}{25}a^{2}-\frac{8}{25}a$, $\frac{1}{625}a^{14}-\frac{1}{625}a^{11}+\frac{11}{625}a^{9}+\frac{38}{625}a^{8}+\frac{46}{625}a^{7}-\frac{16}{625}a^{6}-\frac{31}{625}a^{5}-\frac{248}{625}a^{4}+\frac{3}{25}a^{3}-\frac{12}{25}a^{2}-\frac{1}{5}a$, $\frac{1}{3125}a^{15}+\frac{1}{3125}a^{14}+\frac{9}{3125}a^{12}+\frac{44}{3125}a^{11}-\frac{24}{3125}a^{10}-\frac{31}{3125}a^{9}-\frac{226}{3125}a^{8}+\frac{29}{625}a^{7}-\frac{37}{3125}a^{6}-\frac{224}{3125}a^{5}-\frac{323}{3125}a^{4}+\frac{253}{625}a^{3}-\frac{13}{125}a^{2}-\frac{12}{25}a$, $\frac{1}{134375}a^{16}+\frac{4}{26875}a^{15}-\frac{96}{134375}a^{14}-\frac{51}{134375}a^{13}-\frac{32}{26875}a^{12}-\frac{198}{134375}a^{11}-\frac{552}{134375}a^{10}+\frac{184}{26875}a^{9}-\frac{179}{134375}a^{8}-\frac{5352}{134375}a^{7}+\frac{12028}{134375}a^{6}+\frac{12321}{134375}a^{5}-\frac{18742}{134375}a^{4}-\frac{4557}{26875}a^{3}+\frac{818}{5375}a^{2}-\frac{407}{1075}a+\frac{9}{43}$, $\frac{1}{671875}a^{17}-\frac{1}{671875}a^{16}+\frac{1}{15625}a^{15}-\frac{486}{671875}a^{14}+\frac{51}{671875}a^{13}+\frac{1743}{671875}a^{12}-\frac{3188}{671875}a^{11}+\frac{11781}{671875}a^{10}-\frac{2213}{671875}a^{9}+\frac{12683}{671875}a^{8}+\frac{11382}{134375}a^{7}-\frac{1322}{26875}a^{6}+\frac{7521}{671875}a^{5}-\frac{37374}{134375}a^{4}+\frac{12097}{26875}a^{3}+\frac{1971}{5375}a^{2}+\frac{12}{25}a-\frac{12}{43}$, $\frac{1}{671875}a^{18}+\frac{2}{671875}a^{16}+\frac{47}{671875}a^{15}+\frac{79}{134375}a^{14}-\frac{466}{671875}a^{13}+\frac{88}{134375}a^{12}-\frac{8427}{671875}a^{11}-\frac{134}{15625}a^{10}-\frac{2299}{134375}a^{9}-\frac{59987}{671875}a^{8}-\frac{5517}{134375}a^{7}-\frac{27629}{671875}a^{6}-\frac{54924}{671875}a^{5}-\frac{25097}{134375}a^{4}+\frac{358}{26875}a^{3}-\frac{1047}{5375}a^{2}+\frac{247}{1075}a+\frac{2}{43}$, $\frac{1}{671875}a^{19}-\frac{1}{671875}a^{16}-\frac{46}{671875}a^{15}-\frac{499}{671875}a^{14}-\frac{337}{671875}a^{13}+\frac{44}{15625}a^{12}-\frac{8406}{671875}a^{11}+\frac{7163}{671875}a^{10}-\frac{4381}{671875}a^{9}-\frac{13471}{671875}a^{8}-\frac{65199}{671875}a^{7}+\frac{39511}{671875}a^{6}+\frac{22368}{671875}a^{5}-\frac{66669}{134375}a^{4}+\frac{1964}{5375}a^{3}-\frac{1599}{5375}a^{2}-\frac{438}{1075}a+\frac{20}{43}$, $\frac{1}{16796875}a^{20}+\frac{3}{16796875}a^{19}+\frac{7}{16796875}a^{18}+\frac{3}{16796875}a^{17}-\frac{4}{16796875}a^{16}+\frac{779}{16796875}a^{15}+\frac{8742}{16796875}a^{14}+\frac{13238}{16796875}a^{13}-\frac{44718}{16796875}a^{12}+\frac{233084}{16796875}a^{11}+\frac{3718}{16796875}a^{10}-\frac{45246}{16796875}a^{9}-\frac{930619}{16796875}a^{8}-\frac{30436}{16796875}a^{7}+\frac{146623}{16796875}a^{6}+\frac{61964}{671875}a^{5}-\frac{125179}{671875}a^{4}+\frac{12377}{26875}a^{3}-\frac{4252}{26875}a^{2}-\frac{313}{1075}a+\frac{7}{43}$, $\frac{1}{6432447265625}a^{21}+\frac{153236}{6432447265625}a^{20}+\frac{307181}{6432447265625}a^{19}+\frac{716484}{6432447265625}a^{18}-\frac{99176}{1286489453125}a^{17}-\frac{410421}{149591796875}a^{16}-\frac{123894376}{6432447265625}a^{15}+\frac{3856253424}{6432447265625}a^{14}+\frac{807696736}{6432447265625}a^{13}+\frac{1986076528}{1286489453125}a^{12}-\frac{7123393182}{1286489453125}a^{11}-\frac{5345734177}{6432447265625}a^{10}+\frac{83767239313}{6432447265625}a^{9}-\frac{365558157188}{6432447265625}a^{8}+\frac{30927430752}{1286489453125}a^{7}-\frac{478635406666}{6432447265625}a^{6}+\frac{12054296706}{257297890625}a^{5}+\frac{81864387328}{257297890625}a^{4}-\frac{3725646161}{10291915625}a^{3}-\frac{251517}{596875}a^{2}-\frac{160664207}{411676625}a-\frac{8184772}{16467065}$, $\frac{1}{85\!\cdots\!75}a^{22}+\frac{86\!\cdots\!91}{85\!\cdots\!75}a^{21}+\frac{12\!\cdots\!06}{85\!\cdots\!75}a^{20}+\frac{51\!\cdots\!24}{85\!\cdots\!75}a^{19}+\frac{84\!\cdots\!86}{17\!\cdots\!75}a^{18}-\frac{21\!\cdots\!68}{85\!\cdots\!75}a^{17}+\frac{15\!\cdots\!54}{85\!\cdots\!75}a^{16}-\frac{70\!\cdots\!26}{85\!\cdots\!75}a^{15}-\frac{57\!\cdots\!54}{85\!\cdots\!75}a^{14}+\frac{10\!\cdots\!16}{17\!\cdots\!75}a^{13}-\frac{26\!\cdots\!34}{17\!\cdots\!75}a^{12}-\frac{65\!\cdots\!72}{85\!\cdots\!75}a^{11}-\frac{94\!\cdots\!12}{85\!\cdots\!75}a^{10}+\frac{15\!\cdots\!32}{85\!\cdots\!75}a^{9}+\frac{39\!\cdots\!38}{17\!\cdots\!75}a^{8}+\frac{59\!\cdots\!64}{85\!\cdots\!75}a^{7}+\frac{62\!\cdots\!96}{17\!\cdots\!75}a^{6}-\frac{17\!\cdots\!97}{34\!\cdots\!75}a^{5}-\frac{28\!\cdots\!33}{68\!\cdots\!75}a^{4}+\frac{17\!\cdots\!79}{13\!\cdots\!75}a^{3}+\frac{82\!\cdots\!96}{27\!\cdots\!75}a^{2}-\frac{34\!\cdots\!32}{10\!\cdots\!75}a+\frac{10\!\cdots\!76}{42\!\cdots\!99}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $5$

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $22$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{98\!\cdots\!87}{34\!\cdots\!75}a^{22}-\frac{12\!\cdots\!01}{85\!\cdots\!75}a^{21}-\frac{97\!\cdots\!21}{85\!\cdots\!75}a^{20}+\frac{78\!\cdots\!64}{85\!\cdots\!75}a^{19}+\frac{14\!\cdots\!21}{85\!\cdots\!75}a^{18}-\frac{11\!\cdots\!78}{68\!\cdots\!75}a^{17}-\frac{10\!\cdots\!57}{85\!\cdots\!75}a^{16}+\frac{11\!\cdots\!61}{85\!\cdots\!75}a^{15}+\frac{37\!\cdots\!56}{85\!\cdots\!75}a^{14}-\frac{41\!\cdots\!91}{85\!\cdots\!75}a^{13}-\frac{15\!\cdots\!02}{17\!\cdots\!75}a^{12}+\frac{15\!\cdots\!49}{17\!\cdots\!75}a^{11}+\frac{82\!\cdots\!22}{85\!\cdots\!75}a^{10}-\frac{69\!\cdots\!03}{85\!\cdots\!75}a^{9}-\frac{43\!\cdots\!97}{85\!\cdots\!75}a^{8}+\frac{11\!\cdots\!38}{34\!\cdots\!75}a^{7}+\frac{92\!\cdots\!86}{85\!\cdots\!75}a^{6}-\frac{13\!\cdots\!16}{34\!\cdots\!75}a^{5}-\frac{20\!\cdots\!88}{34\!\cdots\!75}a^{4}+\frac{37\!\cdots\!66}{13\!\cdots\!75}a^{3}+\frac{10\!\cdots\!51}{13\!\cdots\!75}a^{2}-\frac{32\!\cdots\!18}{54\!\cdots\!75}a+\frac{18\!\cdots\!59}{21\!\cdots\!95}$, $\frac{18\!\cdots\!73}{17\!\cdots\!75}a^{22}-\frac{25\!\cdots\!21}{85\!\cdots\!75}a^{21}-\frac{36\!\cdots\!76}{85\!\cdots\!75}a^{20}+\frac{11\!\cdots\!34}{85\!\cdots\!75}a^{19}+\frac{53\!\cdots\!11}{85\!\cdots\!75}a^{18}-\frac{13\!\cdots\!39}{68\!\cdots\!75}a^{17}-\frac{37\!\cdots\!27}{85\!\cdots\!75}a^{16}+\frac{12\!\cdots\!91}{85\!\cdots\!75}a^{15}+\frac{14\!\cdots\!11}{85\!\cdots\!75}a^{14}-\frac{47\!\cdots\!81}{85\!\cdots\!75}a^{13}-\frac{58\!\cdots\!86}{17\!\cdots\!75}a^{12}+\frac{38\!\cdots\!26}{34\!\cdots\!75}a^{11}+\frac{33\!\cdots\!07}{85\!\cdots\!75}a^{10}-\frac{10\!\cdots\!43}{85\!\cdots\!75}a^{9}-\frac{20\!\cdots\!77}{85\!\cdots\!75}a^{8}+\frac{10\!\cdots\!14}{17\!\cdots\!75}a^{7}+\frac{64\!\cdots\!66}{85\!\cdots\!75}a^{6}-\frac{40\!\cdots\!06}{34\!\cdots\!75}a^{5}-\frac{40\!\cdots\!53}{34\!\cdots\!75}a^{4}+\frac{64\!\cdots\!06}{13\!\cdots\!75}a^{3}+\frac{49\!\cdots\!56}{13\!\cdots\!75}a^{2}-\frac{36\!\cdots\!18}{54\!\cdots\!75}a-\frac{41\!\cdots\!81}{21\!\cdots\!95}$, $\frac{13\!\cdots\!98}{17\!\cdots\!75}a^{22}-\frac{13\!\cdots\!73}{17\!\cdots\!75}a^{21}-\frac{54\!\cdots\!67}{17\!\cdots\!75}a^{20}+\frac{71\!\cdots\!44}{17\!\cdots\!75}a^{19}+\frac{80\!\cdots\!93}{17\!\cdots\!75}a^{18}-\frac{12\!\cdots\!21}{17\!\cdots\!75}a^{17}-\frac{56\!\cdots\!19}{17\!\cdots\!75}a^{16}+\frac{92\!\cdots\!27}{17\!\cdots\!75}a^{15}+\frac{21\!\cdots\!31}{17\!\cdots\!75}a^{14}-\frac{34\!\cdots\!38}{17\!\cdots\!75}a^{13}-\frac{42\!\cdots\!53}{17\!\cdots\!75}a^{12}+\frac{64\!\cdots\!68}{17\!\cdots\!75}a^{11}+\frac{45\!\cdots\!09}{17\!\cdots\!75}a^{10}-\frac{62\!\cdots\!38}{17\!\cdots\!75}a^{9}-\frac{24\!\cdots\!96}{17\!\cdots\!75}a^{8}+\frac{28\!\cdots\!31}{17\!\cdots\!75}a^{7}+\frac{54\!\cdots\!29}{17\!\cdots\!75}a^{6}-\frac{17\!\cdots\!53}{68\!\cdots\!75}a^{5}-\frac{14\!\cdots\!92}{68\!\cdots\!75}a^{4}+\frac{43\!\cdots\!01}{54\!\cdots\!75}a^{3}-\frac{84\!\cdots\!46}{27\!\cdots\!75}a^{2}+\frac{24\!\cdots\!29}{10\!\cdots\!75}a+\frac{81\!\cdots\!08}{42\!\cdots\!99}$, $\frac{30\!\cdots\!41}{85\!\cdots\!75}a^{22}-\frac{12\!\cdots\!46}{34\!\cdots\!75}a^{21}-\frac{24\!\cdots\!44}{17\!\cdots\!75}a^{20}+\frac{16\!\cdots\!23}{85\!\cdots\!75}a^{19}+\frac{17\!\cdots\!51}{85\!\cdots\!75}a^{18}-\frac{27\!\cdots\!83}{85\!\cdots\!75}a^{17}-\frac{12\!\cdots\!68}{85\!\cdots\!75}a^{16}+\frac{41\!\cdots\!53}{17\!\cdots\!75}a^{15}+\frac{47\!\cdots\!92}{85\!\cdots\!75}a^{14}-\frac{40\!\cdots\!71}{44\!\cdots\!25}a^{13}-\frac{19\!\cdots\!02}{17\!\cdots\!75}a^{12}+\frac{15\!\cdots\!08}{85\!\cdots\!75}a^{11}+\frac{21\!\cdots\!94}{17\!\cdots\!75}a^{10}-\frac{14\!\cdots\!66}{85\!\cdots\!75}a^{9}-\frac{58\!\cdots\!82}{85\!\cdots\!75}a^{8}+\frac{70\!\cdots\!64}{85\!\cdots\!75}a^{7}+\frac{14\!\cdots\!76}{85\!\cdots\!75}a^{6}-\frac{52\!\cdots\!33}{34\!\cdots\!75}a^{5}-\frac{53\!\cdots\!58}{34\!\cdots\!75}a^{4}+\frac{52\!\cdots\!78}{54\!\cdots\!75}a^{3}+\frac{45\!\cdots\!41}{13\!\cdots\!75}a^{2}-\frac{10\!\cdots\!53}{54\!\cdots\!75}a+\frac{36\!\cdots\!99}{21\!\cdots\!95}$, $\frac{22\!\cdots\!23}{85\!\cdots\!75}a^{22}-\frac{17\!\cdots\!44}{85\!\cdots\!75}a^{21}-\frac{90\!\cdots\!49}{85\!\cdots\!75}a^{20}+\frac{19\!\cdots\!98}{17\!\cdots\!75}a^{19}+\frac{13\!\cdots\!47}{85\!\cdots\!75}a^{18}-\frac{17\!\cdots\!19}{85\!\cdots\!75}a^{17}-\frac{94\!\cdots\!77}{85\!\cdots\!75}a^{16}+\frac{12\!\cdots\!44}{85\!\cdots\!75}a^{15}+\frac{71\!\cdots\!97}{17\!\cdots\!75}a^{14}-\frac{47\!\cdots\!82}{85\!\cdots\!75}a^{13}-\frac{29\!\cdots\!26}{34\!\cdots\!75}a^{12}+\frac{91\!\cdots\!94}{85\!\cdots\!75}a^{11}+\frac{81\!\cdots\!83}{85\!\cdots\!75}a^{10}-\frac{17\!\cdots\!93}{17\!\cdots\!75}a^{9}-\frac{46\!\cdots\!54}{85\!\cdots\!75}a^{8}+\frac{40\!\cdots\!57}{85\!\cdots\!75}a^{7}+\frac{12\!\cdots\!92}{85\!\cdots\!75}a^{6}-\frac{26\!\cdots\!98}{34\!\cdots\!75}a^{5}-\frac{49\!\cdots\!36}{34\!\cdots\!75}a^{4}+\frac{49\!\cdots\!59}{13\!\cdots\!75}a^{3}+\frac{57\!\cdots\!22}{13\!\cdots\!75}a^{2}-\frac{33\!\cdots\!36}{54\!\cdots\!75}a-\frac{43\!\cdots\!37}{21\!\cdots\!95}$, $\frac{10\!\cdots\!33}{17\!\cdots\!75}a^{22}-\frac{13\!\cdots\!92}{17\!\cdots\!75}a^{21}-\frac{40\!\cdots\!69}{17\!\cdots\!75}a^{20}+\frac{66\!\cdots\!56}{17\!\cdots\!75}a^{19}+\frac{59\!\cdots\!56}{17\!\cdots\!75}a^{18}-\frac{22\!\cdots\!12}{34\!\cdots\!75}a^{17}-\frac{84\!\cdots\!64}{34\!\cdots\!75}a^{16}+\frac{82\!\cdots\!99}{17\!\cdots\!75}a^{15}+\frac{15\!\cdots\!14}{17\!\cdots\!75}a^{14}-\frac{30\!\cdots\!41}{17\!\cdots\!75}a^{13}-\frac{31\!\cdots\!39}{17\!\cdots\!75}a^{12}+\frac{59\!\cdots\!01}{17\!\cdots\!75}a^{11}+\frac{33\!\cdots\!48}{17\!\cdots\!75}a^{10}-\frac{59\!\cdots\!42}{17\!\cdots\!75}a^{9}-\frac{17\!\cdots\!02}{17\!\cdots\!75}a^{8}+\frac{27\!\cdots\!04}{17\!\cdots\!75}a^{7}+\frac{36\!\cdots\!79}{17\!\cdots\!75}a^{6}-\frac{19\!\cdots\!12}{68\!\cdots\!75}a^{5}-\frac{92\!\cdots\!42}{68\!\cdots\!75}a^{4}+\frac{41\!\cdots\!63}{27\!\cdots\!75}a^{3}-\frac{37\!\cdots\!96}{27\!\cdots\!75}a^{2}-\frac{56\!\cdots\!51}{10\!\cdots\!75}a+\frac{61\!\cdots\!13}{42\!\cdots\!99}$, $\frac{37\!\cdots\!49}{85\!\cdots\!75}a^{22}+\frac{59\!\cdots\!53}{17\!\cdots\!75}a^{21}-\frac{30\!\cdots\!31}{17\!\cdots\!75}a^{20}-\frac{11\!\cdots\!08}{85\!\cdots\!75}a^{19}+\frac{24\!\cdots\!94}{85\!\cdots\!75}a^{18}+\frac{15\!\cdots\!93}{85\!\cdots\!75}a^{17}-\frac{20\!\cdots\!12}{85\!\cdots\!75}a^{16}-\frac{21\!\cdots\!28}{17\!\cdots\!75}a^{15}+\frac{93\!\cdots\!18}{85\!\cdots\!75}a^{14}+\frac{38\!\cdots\!91}{85\!\cdots\!75}a^{13}-\frac{49\!\cdots\!09}{17\!\cdots\!75}a^{12}-\frac{73\!\cdots\!23}{85\!\cdots\!75}a^{11}+\frac{73\!\cdots\!46}{17\!\cdots\!75}a^{10}+\frac{72\!\cdots\!86}{85\!\cdots\!75}a^{9}-\frac{29\!\cdots\!58}{85\!\cdots\!75}a^{8}-\frac{33\!\cdots\!64}{85\!\cdots\!75}a^{7}+\frac{11\!\cdots\!54}{85\!\cdots\!75}a^{6}+\frac{23\!\cdots\!78}{34\!\cdots\!75}a^{5}-\frac{65\!\cdots\!82}{34\!\cdots\!75}a^{4}-\frac{60\!\cdots\!91}{27\!\cdots\!75}a^{3}+\frac{83\!\cdots\!39}{13\!\cdots\!75}a^{2}-\frac{20\!\cdots\!47}{54\!\cdots\!75}a-\frac{52\!\cdots\!34}{21\!\cdots\!95}$, $\frac{12\!\cdots\!08}{85\!\cdots\!75}a^{22}-\frac{60\!\cdots\!29}{85\!\cdots\!75}a^{21}-\frac{50\!\cdots\!14}{85\!\cdots\!75}a^{20}+\frac{79\!\cdots\!49}{17\!\cdots\!75}a^{19}+\frac{74\!\cdots\!82}{85\!\cdots\!75}a^{18}-\frac{74\!\cdots\!14}{85\!\cdots\!75}a^{17}-\frac{53\!\cdots\!07}{85\!\cdots\!75}a^{16}+\frac{57\!\cdots\!09}{85\!\cdots\!75}a^{15}+\frac{40\!\cdots\!21}{17\!\cdots\!75}a^{14}-\frac{21\!\cdots\!67}{85\!\cdots\!75}a^{13}-\frac{83\!\cdots\!82}{17\!\cdots\!75}a^{12}+\frac{39\!\cdots\!29}{85\!\cdots\!75}a^{11}+\frac{46\!\cdots\!63}{85\!\cdots\!75}a^{10}-\frac{14\!\cdots\!74}{34\!\cdots\!75}a^{9}-\frac{26\!\cdots\!99}{85\!\cdots\!75}a^{8}+\frac{14\!\cdots\!27}{85\!\cdots\!75}a^{7}+\frac{70\!\cdots\!22}{85\!\cdots\!75}a^{6}-\frac{67\!\cdots\!33}{34\!\cdots\!75}a^{5}-\frac{27\!\cdots\!26}{34\!\cdots\!75}a^{4}-\frac{23\!\cdots\!51}{13\!\cdots\!75}a^{3}+\frac{22\!\cdots\!52}{13\!\cdots\!75}a^{2}-\frac{41\!\cdots\!66}{54\!\cdots\!75}a-\frac{12\!\cdots\!12}{21\!\cdots\!95}$, $\frac{17\!\cdots\!16}{85\!\cdots\!75}a^{22}-\frac{21\!\cdots\!06}{85\!\cdots\!75}a^{21}-\frac{69\!\cdots\!16}{85\!\cdots\!75}a^{20}+\frac{10\!\cdots\!47}{85\!\cdots\!75}a^{19}+\frac{10\!\cdots\!87}{85\!\cdots\!75}a^{18}-\frac{18\!\cdots\!68}{85\!\cdots\!75}a^{17}-\frac{14\!\cdots\!41}{17\!\cdots\!75}a^{16}+\frac{13\!\cdots\!26}{85\!\cdots\!75}a^{15}+\frac{27\!\cdots\!63}{85\!\cdots\!75}a^{14}-\frac{50\!\cdots\!17}{85\!\cdots\!75}a^{13}-\frac{11\!\cdots\!87}{17\!\cdots\!75}a^{12}+\frac{98\!\cdots\!98}{85\!\cdots\!75}a^{11}+\frac{60\!\cdots\!67}{85\!\cdots\!75}a^{10}-\frac{10\!\cdots\!89}{85\!\cdots\!75}a^{9}-\frac{33\!\cdots\!84}{85\!\cdots\!75}a^{8}+\frac{50\!\cdots\!34}{85\!\cdots\!75}a^{7}+\frac{80\!\cdots\!07}{85\!\cdots\!75}a^{6}-\frac{43\!\cdots\!64}{34\!\cdots\!75}a^{5}-\frac{30\!\cdots\!06}{34\!\cdots\!75}a^{4}+\frac{14\!\cdots\!71}{13\!\cdots\!75}a^{3}+\frac{22\!\cdots\!37}{13\!\cdots\!75}a^{2}-\frac{18\!\cdots\!81}{54\!\cdots\!75}a+\frac{13\!\cdots\!73}{21\!\cdots\!95}$, $\frac{15\!\cdots\!21}{82\!\cdots\!75}a^{22}-\frac{10\!\cdots\!43}{82\!\cdots\!75}a^{21}-\frac{61\!\cdots\!68}{82\!\cdots\!75}a^{20}+\frac{12\!\cdots\!06}{16\!\cdots\!75}a^{19}+\frac{91\!\cdots\!94}{82\!\cdots\!75}a^{18}-\frac{11\!\cdots\!58}{82\!\cdots\!75}a^{17}-\frac{64\!\cdots\!79}{82\!\cdots\!75}a^{16}+\frac{84\!\cdots\!33}{82\!\cdots\!75}a^{15}+\frac{48\!\cdots\!19}{16\!\cdots\!75}a^{14}-\frac{31\!\cdots\!14}{82\!\cdots\!75}a^{13}-\frac{10\!\cdots\!21}{16\!\cdots\!75}a^{12}+\frac{59\!\cdots\!28}{82\!\cdots\!75}a^{11}+\frac{56\!\cdots\!56}{82\!\cdots\!75}a^{10}-\frac{11\!\cdots\!86}{16\!\cdots\!75}a^{9}-\frac{32\!\cdots\!08}{82\!\cdots\!75}a^{8}+\frac{25\!\cdots\!54}{82\!\cdots\!75}a^{7}+\frac{83\!\cdots\!94}{82\!\cdots\!75}a^{6}-\frac{16\!\cdots\!66}{33\!\cdots\!75}a^{5}-\frac{33\!\cdots\!02}{33\!\cdots\!75}a^{4}+\frac{26\!\cdots\!18}{13\!\cdots\!75}a^{3}+\frac{19\!\cdots\!19}{69\!\cdots\!25}a^{2}-\frac{19\!\cdots\!62}{52\!\cdots\!75}a-\frac{27\!\cdots\!27}{21\!\cdots\!95}$, $\frac{10\!\cdots\!01}{85\!\cdots\!75}a^{22}-\frac{67\!\cdots\!81}{85\!\cdots\!75}a^{21}-\frac{40\!\cdots\!66}{85\!\cdots\!75}a^{20}+\frac{39\!\cdots\!77}{85\!\cdots\!75}a^{19}+\frac{59\!\cdots\!22}{85\!\cdots\!75}a^{18}-\frac{70\!\cdots\!48}{85\!\cdots\!75}a^{17}-\frac{84\!\cdots\!22}{17\!\cdots\!75}a^{16}+\frac{53\!\cdots\!51}{85\!\cdots\!75}a^{15}+\frac{15\!\cdots\!83}{85\!\cdots\!75}a^{14}-\frac{19\!\cdots\!77}{85\!\cdots\!75}a^{13}-\frac{65\!\cdots\!72}{17\!\cdots\!75}a^{12}+\frac{37\!\cdots\!28}{85\!\cdots\!75}a^{11}+\frac{36\!\cdots\!42}{85\!\cdots\!75}a^{10}-\frac{36\!\cdots\!49}{85\!\cdots\!75}a^{9}-\frac{20\!\cdots\!79}{85\!\cdots\!75}a^{8}+\frac{15\!\cdots\!74}{85\!\cdots\!75}a^{7}+\frac{54\!\cdots\!92}{85\!\cdots\!75}a^{6}-\frac{96\!\cdots\!74}{34\!\cdots\!75}a^{5}-\frac{22\!\cdots\!11}{34\!\cdots\!75}a^{4}+\frac{13\!\cdots\!06}{13\!\cdots\!75}a^{3}+\frac{23\!\cdots\!72}{13\!\cdots\!75}a^{2}-\frac{95\!\cdots\!46}{54\!\cdots\!75}a-\frac{15\!\cdots\!27}{21\!\cdots\!95}$, $\frac{27\!\cdots\!02}{17\!\cdots\!75}a^{22}-\frac{11\!\cdots\!27}{85\!\cdots\!75}a^{21}-\frac{53\!\cdots\!67}{85\!\cdots\!75}a^{20}+\frac{63\!\cdots\!58}{85\!\cdots\!75}a^{19}+\frac{79\!\cdots\!77}{85\!\cdots\!75}a^{18}-\frac{22\!\cdots\!96}{17\!\cdots\!75}a^{17}-\frac{56\!\cdots\!44}{85\!\cdots\!75}a^{16}+\frac{83\!\cdots\!97}{85\!\cdots\!75}a^{15}+\frac{21\!\cdots\!32}{85\!\cdots\!75}a^{14}-\frac{30\!\cdots\!92}{85\!\cdots\!75}a^{13}-\frac{86\!\cdots\!19}{17\!\cdots\!75}a^{12}+\frac{11\!\cdots\!24}{17\!\cdots\!75}a^{11}+\frac{47\!\cdots\!94}{85\!\cdots\!75}a^{10}-\frac{58\!\cdots\!41}{85\!\cdots\!75}a^{9}-\frac{26\!\cdots\!39}{85\!\cdots\!75}a^{8}+\frac{53\!\cdots\!43}{17\!\cdots\!75}a^{7}+\frac{67\!\cdots\!82}{85\!\cdots\!75}a^{6}-\frac{18\!\cdots\!67}{34\!\cdots\!75}a^{5}-\frac{25\!\cdots\!31}{34\!\cdots\!75}a^{4}+\frac{40\!\cdots\!17}{13\!\cdots\!75}a^{3}+\frac{23\!\cdots\!37}{13\!\cdots\!75}a^{2}-\frac{32\!\cdots\!51}{54\!\cdots\!75}a+\frac{34\!\cdots\!78}{21\!\cdots\!95}$, $\frac{97\!\cdots\!99}{85\!\cdots\!75}a^{22}-\frac{51\!\cdots\!83}{85\!\cdots\!75}a^{21}-\frac{38\!\cdots\!78}{85\!\cdots\!75}a^{20}+\frac{32\!\cdots\!94}{85\!\cdots\!75}a^{19}+\frac{57\!\cdots\!72}{85\!\cdots\!75}a^{18}-\frac{59\!\cdots\!52}{85\!\cdots\!75}a^{17}-\frac{40\!\cdots\!88}{85\!\cdots\!75}a^{16}+\frac{45\!\cdots\!78}{85\!\cdots\!75}a^{15}+\frac{15\!\cdots\!51}{85\!\cdots\!75}a^{14}-\frac{17\!\cdots\!97}{85\!\cdots\!75}a^{13}-\frac{63\!\cdots\!96}{17\!\cdots\!75}a^{12}+\frac{31\!\cdots\!02}{85\!\cdots\!75}a^{11}+\frac{35\!\cdots\!41}{85\!\cdots\!75}a^{10}-\frac{29\!\cdots\!18}{85\!\cdots\!75}a^{9}-\frac{20\!\cdots\!04}{85\!\cdots\!75}a^{8}+\frac{12\!\cdots\!01}{85\!\cdots\!75}a^{7}+\frac{53\!\cdots\!12}{85\!\cdots\!75}a^{6}-\frac{12\!\cdots\!78}{68\!\cdots\!75}a^{5}-\frac{21\!\cdots\!96}{34\!\cdots\!75}a^{4}+\frac{22\!\cdots\!83}{13\!\cdots\!75}a^{3}+\frac{19\!\cdots\!42}{13\!\cdots\!75}a^{2}-\frac{46\!\cdots\!76}{54\!\cdots\!75}a-\frac{12\!\cdots\!97}{21\!\cdots\!95}$, $\frac{51\!\cdots\!99}{85\!\cdots\!75}a^{22}-\frac{58\!\cdots\!54}{85\!\cdots\!75}a^{21}-\frac{20\!\cdots\!94}{85\!\cdots\!75}a^{20}+\frac{29\!\cdots\!63}{85\!\cdots\!75}a^{19}+\frac{30\!\cdots\!13}{85\!\cdots\!75}a^{18}-\frac{50\!\cdots\!52}{85\!\cdots\!75}a^{17}-\frac{42\!\cdots\!17}{17\!\cdots\!75}a^{16}+\frac{37\!\cdots\!34}{85\!\cdots\!75}a^{15}+\frac{79\!\cdots\!27}{85\!\cdots\!75}a^{14}-\frac{13\!\cdots\!58}{85\!\cdots\!75}a^{13}-\frac{32\!\cdots\!73}{17\!\cdots\!75}a^{12}+\frac{27\!\cdots\!97}{85\!\cdots\!75}a^{11}+\frac{17\!\cdots\!28}{85\!\cdots\!75}a^{10}-\frac{27\!\cdots\!06}{85\!\cdots\!75}a^{9}-\frac{95\!\cdots\!41}{85\!\cdots\!75}a^{8}+\frac{12\!\cdots\!26}{85\!\cdots\!75}a^{7}+\frac{22\!\cdots\!43}{85\!\cdots\!75}a^{6}-\frac{98\!\cdots\!06}{34\!\cdots\!75}a^{5}-\frac{80\!\cdots\!69}{34\!\cdots\!75}a^{4}+\frac{26\!\cdots\!69}{13\!\cdots\!75}a^{3}+\frac{51\!\cdots\!13}{13\!\cdots\!75}a^{2}-\frac{22\!\cdots\!74}{54\!\cdots\!75}a+\frac{13\!\cdots\!77}{21\!\cdots\!95}$, $\frac{74\!\cdots\!54}{85\!\cdots\!75}a^{22}-\frac{56\!\cdots\!11}{85\!\cdots\!75}a^{21}-\frac{29\!\cdots\!81}{85\!\cdots\!75}a^{20}+\frac{31\!\cdots\!06}{85\!\cdots\!75}a^{19}+\frac{86\!\cdots\!57}{17\!\cdots\!75}a^{18}-\frac{55\!\cdots\!37}{85\!\cdots\!75}a^{17}-\frac{30\!\cdots\!89}{85\!\cdots\!75}a^{16}+\frac{42\!\cdots\!76}{85\!\cdots\!75}a^{15}+\frac{11\!\cdots\!74}{85\!\cdots\!75}a^{14}-\frac{31\!\cdots\!94}{17\!\cdots\!75}a^{13}-\frac{48\!\cdots\!08}{17\!\cdots\!75}a^{12}+\frac{30\!\cdots\!92}{85\!\cdots\!75}a^{11}+\frac{26\!\cdots\!87}{85\!\cdots\!75}a^{10}-\frac{29\!\cdots\!42}{85\!\cdots\!75}a^{9}-\frac{30\!\cdots\!19}{17\!\cdots\!75}a^{8}+\frac{14\!\cdots\!36}{85\!\cdots\!75}a^{7}+\frac{80\!\cdots\!86}{17\!\cdots\!75}a^{6}-\frac{10\!\cdots\!78}{34\!\cdots\!75}a^{5}-\frac{32\!\cdots\!08}{68\!\cdots\!75}a^{4}+\frac{26\!\cdots\!06}{13\!\cdots\!75}a^{3}+\frac{29\!\cdots\!31}{27\!\cdots\!75}a^{2}-\frac{49\!\cdots\!61}{10\!\cdots\!75}a+\frac{11\!\cdots\!93}{42\!\cdots\!99}$, $\frac{71\!\cdots\!44}{85\!\cdots\!75}a^{22}-\frac{50\!\cdots\!82}{85\!\cdots\!75}a^{21}-\frac{28\!\cdots\!47}{85\!\cdots\!75}a^{20}+\frac{57\!\cdots\!04}{17\!\cdots\!75}a^{19}+\frac{41\!\cdots\!16}{85\!\cdots\!75}a^{18}-\frac{51\!\cdots\!07}{85\!\cdots\!75}a^{17}-\frac{74\!\cdots\!56}{21\!\cdots\!75}a^{16}+\frac{39\!\cdots\!82}{85\!\cdots\!75}a^{15}+\frac{22\!\cdots\!81}{17\!\cdots\!75}a^{14}-\frac{14\!\cdots\!46}{85\!\cdots\!75}a^{13}-\frac{92\!\cdots\!34}{34\!\cdots\!75}a^{12}+\frac{27\!\cdots\!07}{85\!\cdots\!75}a^{11}+\frac{25\!\cdots\!24}{85\!\cdots\!75}a^{10}-\frac{53\!\cdots\!74}{17\!\cdots\!75}a^{9}-\frac{14\!\cdots\!87}{85\!\cdots\!75}a^{8}+\frac{11\!\cdots\!46}{85\!\cdots\!75}a^{7}+\frac{38\!\cdots\!76}{85\!\cdots\!75}a^{6}-\frac{74\!\cdots\!64}{34\!\cdots\!75}a^{5}-\frac{15\!\cdots\!08}{34\!\cdots\!75}a^{4}+\frac{12\!\cdots\!87}{13\!\cdots\!75}a^{3}+\frac{16\!\cdots\!91}{13\!\cdots\!75}a^{2}-\frac{91\!\cdots\!78}{54\!\cdots\!75}a-\frac{12\!\cdots\!51}{21\!\cdots\!95}$, $\frac{10\!\cdots\!62}{85\!\cdots\!75}a^{22}-\frac{72\!\cdots\!77}{85\!\cdots\!75}a^{21}-\frac{40\!\cdots\!12}{85\!\cdots\!75}a^{20}+\frac{41\!\cdots\!24}{85\!\cdots\!75}a^{19}+\frac{59\!\cdots\!64}{85\!\cdots\!75}a^{18}-\frac{73\!\cdots\!71}{85\!\cdots\!75}a^{17}-\frac{85\!\cdots\!94}{17\!\cdots\!75}a^{16}+\frac{55\!\cdots\!32}{85\!\cdots\!75}a^{15}+\frac{16\!\cdots\!21}{85\!\cdots\!75}a^{14}-\frac{20\!\cdots\!99}{85\!\cdots\!75}a^{13}-\frac{26\!\cdots\!11}{68\!\cdots\!75}a^{12}+\frac{39\!\cdots\!76}{85\!\cdots\!75}a^{11}+\frac{36\!\cdots\!44}{85\!\cdots\!75}a^{10}-\frac{38\!\cdots\!38}{85\!\cdots\!75}a^{9}-\frac{20\!\cdots\!48}{85\!\cdots\!75}a^{8}+\frac{16\!\cdots\!53}{85\!\cdots\!75}a^{7}+\frac{54\!\cdots\!89}{85\!\cdots\!75}a^{6}-\frac{10\!\cdots\!23}{34\!\cdots\!75}a^{5}-\frac{22\!\cdots\!12}{34\!\cdots\!75}a^{4}+\frac{17\!\cdots\!37}{13\!\cdots\!75}a^{3}+\frac{24\!\cdots\!99}{13\!\cdots\!75}a^{2}-\frac{12\!\cdots\!62}{54\!\cdots\!75}a-\frac{17\!\cdots\!29}{21\!\cdots\!95}$, $\frac{23\!\cdots\!48}{17\!\cdots\!75}a^{22}-\frac{61\!\cdots\!88}{85\!\cdots\!75}a^{21}-\frac{46\!\cdots\!43}{85\!\cdots\!75}a^{20}+\frac{38\!\cdots\!67}{85\!\cdots\!75}a^{19}+\frac{69\!\cdots\!73}{85\!\cdots\!75}a^{18}-\frac{14\!\cdots\!61}{17\!\cdots\!75}a^{17}-\frac{49\!\cdots\!06}{85\!\cdots\!75}a^{16}+\frac{55\!\cdots\!13}{85\!\cdots\!75}a^{15}+\frac{18\!\cdots\!68}{85\!\cdots\!75}a^{14}-\frac{20\!\cdots\!33}{85\!\cdots\!75}a^{13}-\frac{76\!\cdots\!94}{17\!\cdots\!75}a^{12}+\frac{15\!\cdots\!38}{34\!\cdots\!75}a^{11}+\frac{42\!\cdots\!26}{85\!\cdots\!75}a^{10}-\frac{35\!\cdots\!84}{85\!\cdots\!75}a^{9}-\frac{24\!\cdots\!86}{85\!\cdots\!75}a^{8}+\frac{28\!\cdots\!41}{17\!\cdots\!75}a^{7}+\frac{63\!\cdots\!48}{85\!\cdots\!75}a^{6}-\frac{64\!\cdots\!38}{34\!\cdots\!75}a^{5}-\frac{24\!\cdots\!84}{34\!\cdots\!75}a^{4}-\frac{43\!\cdots\!42}{13\!\cdots\!75}a^{3}+\frac{19\!\cdots\!93}{13\!\cdots\!75}a^{2}+\frac{61\!\cdots\!01}{54\!\cdots\!75}a+\frac{52\!\cdots\!92}{21\!\cdots\!95}$, $\frac{36\!\cdots\!72}{34\!\cdots\!75}a^{22}-\frac{12\!\cdots\!61}{17\!\cdots\!75}a^{21}-\frac{71\!\cdots\!34}{17\!\cdots\!75}a^{20}+\frac{28\!\cdots\!91}{68\!\cdots\!75}a^{19}+\frac{21\!\cdots\!64}{34\!\cdots\!75}a^{18}-\frac{13\!\cdots\!39}{17\!\cdots\!75}a^{17}-\frac{15\!\cdots\!04}{34\!\cdots\!75}a^{16}+\frac{98\!\cdots\!59}{17\!\cdots\!75}a^{15}+\frac{56\!\cdots\!12}{34\!\cdots\!75}a^{14}-\frac{14\!\cdots\!77}{68\!\cdots\!75}a^{13}-\frac{58\!\cdots\!31}{17\!\cdots\!75}a^{12}+\frac{69\!\cdots\!48}{17\!\cdots\!75}a^{11}+\frac{65\!\cdots\!13}{17\!\cdots\!75}a^{10}-\frac{13\!\cdots\!21}{34\!\cdots\!75}a^{9}-\frac{74\!\cdots\!46}{34\!\cdots\!75}a^{8}+\frac{29\!\cdots\!23}{17\!\cdots\!75}a^{7}+\frac{96\!\cdots\!37}{17\!\cdots\!75}a^{6}-\frac{18\!\cdots\!27}{68\!\cdots\!75}a^{5}-\frac{39\!\cdots\!36}{68\!\cdots\!75}a^{4}+\frac{31\!\cdots\!71}{27\!\cdots\!75}a^{3}+\frac{42\!\cdots\!27}{27\!\cdots\!75}a^{2}-\frac{22\!\cdots\!94}{10\!\cdots\!75}a-\frac{30\!\cdots\!99}{42\!\cdots\!99}$, $\frac{54\!\cdots\!14}{17\!\cdots\!75}a^{22}-\frac{18\!\cdots\!33}{85\!\cdots\!75}a^{21}-\frac{10\!\cdots\!63}{85\!\cdots\!75}a^{20}+\frac{10\!\cdots\!87}{85\!\cdots\!75}a^{19}+\frac{15\!\cdots\!23}{85\!\cdots\!75}a^{18}-\frac{38\!\cdots\!79}{17\!\cdots\!75}a^{17}-\frac{11\!\cdots\!36}{85\!\cdots\!75}a^{16}+\frac{14\!\cdots\!33}{85\!\cdots\!75}a^{15}+\frac{42\!\cdots\!48}{85\!\cdots\!75}a^{14}-\frac{53\!\cdots\!33}{85\!\cdots\!75}a^{13}-\frac{17\!\cdots\!34}{17\!\cdots\!75}a^{12}+\frac{20\!\cdots\!48}{17\!\cdots\!75}a^{11}+\frac{97\!\cdots\!41}{85\!\cdots\!75}a^{10}-\frac{97\!\cdots\!99}{85\!\cdots\!75}a^{9}-\frac{55\!\cdots\!61}{85\!\cdots\!75}a^{8}+\frac{68\!\cdots\!84}{13\!\cdots\!75}a^{7}+\frac{14\!\cdots\!98}{85\!\cdots\!75}a^{6}-\frac{25\!\cdots\!88}{34\!\cdots\!75}a^{5}-\frac{58\!\cdots\!59}{34\!\cdots\!75}a^{4}+\frac{37\!\cdots\!13}{13\!\cdots\!75}a^{3}+\frac{61\!\cdots\!93}{13\!\cdots\!75}a^{2}-\frac{25\!\cdots\!99}{54\!\cdots\!75}a-\frac{40\!\cdots\!83}{21\!\cdots\!95}$, $\frac{71\!\cdots\!02}{17\!\cdots\!75}a^{22}-\frac{23\!\cdots\!59}{85\!\cdots\!75}a^{21}-\frac{14\!\cdots\!19}{85\!\cdots\!75}a^{20}+\frac{13\!\cdots\!91}{85\!\cdots\!75}a^{19}+\frac{20\!\cdots\!64}{85\!\cdots\!75}a^{18}-\frac{49\!\cdots\!79}{17\!\cdots\!75}a^{17}-\frac{14\!\cdots\!48}{85\!\cdots\!75}a^{16}+\frac{18\!\cdots\!04}{85\!\cdots\!75}a^{15}+\frac{56\!\cdots\!14}{85\!\cdots\!75}a^{14}-\frac{70\!\cdots\!19}{85\!\cdots\!75}a^{13}-\frac{92\!\cdots\!89}{68\!\cdots\!75}a^{12}+\frac{26\!\cdots\!78}{17\!\cdots\!75}a^{11}+\frac{12\!\cdots\!08}{85\!\cdots\!75}a^{10}-\frac{12\!\cdots\!32}{85\!\cdots\!75}a^{9}-\frac{73\!\cdots\!98}{85\!\cdots\!75}a^{8}+\frac{11\!\cdots\!84}{17\!\cdots\!75}a^{7}+\frac{19\!\cdots\!94}{85\!\cdots\!75}a^{6}-\frac{34\!\cdots\!54}{34\!\cdots\!75}a^{5}-\frac{77\!\cdots\!27}{34\!\cdots\!75}a^{4}+\frac{49\!\cdots\!84}{13\!\cdots\!75}a^{3}+\frac{81\!\cdots\!79}{13\!\cdots\!75}a^{2}-\frac{34\!\cdots\!67}{54\!\cdots\!75}a-\frac{52\!\cdots\!04}{21\!\cdots\!95}$, $\frac{33\!\cdots\!32}{39\!\cdots\!25}a^{22}+\frac{48\!\cdots\!52}{19\!\cdots\!25}a^{21}-\frac{66\!\cdots\!78}{19\!\cdots\!25}a^{20}+\frac{11\!\cdots\!17}{19\!\cdots\!25}a^{19}+\frac{22\!\cdots\!46}{46\!\cdots\!75}a^{18}-\frac{47\!\cdots\!78}{39\!\cdots\!25}a^{17}-\frac{69\!\cdots\!86}{19\!\cdots\!25}a^{16}+\frac{22\!\cdots\!73}{19\!\cdots\!25}a^{15}+\frac{26\!\cdots\!93}{19\!\cdots\!25}a^{14}-\frac{79\!\cdots\!38}{19\!\cdots\!25}a^{13}-\frac{10\!\cdots\!54}{39\!\cdots\!25}a^{12}+\frac{22\!\cdots\!97}{39\!\cdots\!25}a^{11}+\frac{59\!\cdots\!71}{19\!\cdots\!25}a^{10}-\frac{37\!\cdots\!34}{19\!\cdots\!25}a^{9}-\frac{32\!\cdots\!96}{19\!\cdots\!25}a^{8}-\frac{73\!\cdots\!48}{39\!\cdots\!25}a^{7}+\frac{73\!\cdots\!78}{19\!\cdots\!25}a^{6}+\frac{92\!\cdots\!42}{79\!\cdots\!25}a^{5}-\frac{15\!\cdots\!99}{79\!\cdots\!25}a^{4}-\frac{60\!\cdots\!47}{31\!\cdots\!25}a^{3}+\frac{10\!\cdots\!73}{31\!\cdots\!25}a^{2}-\frac{75\!\cdots\!54}{12\!\cdots\!25}a+\frac{10\!\cdots\!52}{49\!\cdots\!65}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 1001378635833781400000000000 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{23}\cdot(2\pi)^{0}\cdot 1001378635833781400000000000 \cdot 1}{2\cdot\sqrt{16151009482177927765006229664562804196212236775629575713829087641}}\cr\approx \mathstrut & 33.0490051028935 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^23 - x^22 - 396*x^21 + 517*x^20 + 58242*x^19 - 89048*x^18 - 4136665*x^17 + 6675371*x^16 + 155317993*x^15 - 248917597*x^14 - 3168505860*x^13 + 4803054368*x^12 + 34789513687*x^11 - 47690452504*x^10 - 193631555469*x^9 + 225956060874*x^8 + 483028561517*x^7 - 415966978205*x^6 - 465412635150*x^5 + 267147031000*x^4 + 115014666875*x^3 - 62643096875*x^2 - 1127109375*x + 2017578125)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^23 - x^22 - 396*x^21 + 517*x^20 + 58242*x^19 - 89048*x^18 - 4136665*x^17 + 6675371*x^16 + 155317993*x^15 - 248917597*x^14 - 3168505860*x^13 + 4803054368*x^12 + 34789513687*x^11 - 47690452504*x^10 - 193631555469*x^9 + 225956060874*x^8 + 483028561517*x^7 - 415966978205*x^6 - 465412635150*x^5 + 267147031000*x^4 + 115014666875*x^3 - 62643096875*x^2 - 1127109375*x + 2017578125, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^23 - x^22 - 396*x^21 + 517*x^20 + 58242*x^19 - 89048*x^18 - 4136665*x^17 + 6675371*x^16 + 155317993*x^15 - 248917597*x^14 - 3168505860*x^13 + 4803054368*x^12 + 34789513687*x^11 - 47690452504*x^10 - 193631555469*x^9 + 225956060874*x^8 + 483028561517*x^7 - 415966978205*x^6 - 465412635150*x^5 + 267147031000*x^4 + 115014666875*x^3 - 62643096875*x^2 - 1127109375*x + 2017578125);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^23 - x^22 - 396*x^21 + 517*x^20 + 58242*x^19 - 89048*x^18 - 4136665*x^17 + 6675371*x^16 + 155317993*x^15 - 248917597*x^14 - 3168505860*x^13 + 4803054368*x^12 + 34789513687*x^11 - 47690452504*x^10 - 193631555469*x^9 + 225956060874*x^8 + 483028561517*x^7 - 415966978205*x^6 - 465412635150*x^5 + 267147031000*x^4 + 115014666875*x^3 - 62643096875*x^2 - 1127109375*x + 2017578125);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{23}$ (as 23T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 23
The 23 conjugacy class representatives for $C_{23}$
Character table for $C_{23}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $23$ $23$ ${\href{/padicField/5.1.0.1}{1} }^{23}$ $23$ $23$ $23$ $23$ $23$ $23$ $23$ $23$ $23$ $23$ ${\href{/padicField/43.1.0.1}{1} }^{23}$ $23$ $23$ $23$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(829\) Copy content Toggle raw display Deg $23$$23$$1$$22$