Normalized defining polynomial
\( x^{23} - x^{22} - 66 x^{21} + 147 x^{20} + 1630 x^{19} - 5648 x^{18} - 16457 x^{17} + 92686 x^{16} + 18441 x^{15} - 709360 x^{14} + 832638 x^{13} + 2239299 x^{12} - 5679764 x^{11} - 156443 x^{10} + 12673530 x^{9} - 11318727 x^{8} - 6468097 x^{7} + 14166332 x^{6} - 3186420 x^{5} - 5386949 x^{4} + 2918745 x^{3} + 436718 x^{2} - 516219 x + 63941 \)
Invariants
| Degree: | $23$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[23, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(140063703503689367173618364344202364099995564521=139^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $112.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $139$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(139\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{139}(64,·)$, $\chi_{139}(1,·)$, $\chi_{139}(131,·)$, $\chi_{139}(6,·)$, $\chi_{139}(129,·)$, $\chi_{139}(77,·)$, $\chi_{139}(79,·)$, $\chi_{139}(80,·)$, $\chi_{139}(100,·)$, $\chi_{139}(91,·)$, $\chi_{139}(116,·)$, $\chi_{139}(34,·)$, $\chi_{139}(36,·)$, $\chi_{139}(65,·)$, $\chi_{139}(106,·)$, $\chi_{139}(44,·)$, $\chi_{139}(45,·)$, $\chi_{139}(112,·)$, $\chi_{139}(52,·)$, $\chi_{139}(55,·)$, $\chi_{139}(57,·)$, $\chi_{139}(125,·)$, $\chi_{139}(63,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{43} a^{19} - \frac{12}{43} a^{18} + \frac{19}{43} a^{17} - \frac{9}{43} a^{16} + \frac{11}{43} a^{14} - \frac{20}{43} a^{13} + \frac{18}{43} a^{10} + \frac{2}{43} a^{8} + \frac{2}{43} a^{7} + \frac{11}{43} a^{6} + \frac{21}{43} a^{5} - \frac{20}{43} a^{4} + \frac{21}{43} a^{3} - \frac{2}{43} a$, $\frac{1}{43} a^{20} + \frac{4}{43} a^{18} + \frac{4}{43} a^{17} + \frac{21}{43} a^{16} + \frac{11}{43} a^{15} - \frac{17}{43} a^{14} + \frac{18}{43} a^{13} + \frac{18}{43} a^{11} + \frac{1}{43} a^{10} + \frac{2}{43} a^{9} - \frac{17}{43} a^{8} - \frac{8}{43} a^{7} - \frac{19}{43} a^{6} + \frac{17}{43} a^{5} - \frac{4}{43} a^{4} - \frac{6}{43} a^{3} - \frac{2}{43} a^{2} + \frac{19}{43} a$, $\frac{1}{754951} a^{21} - \frac{5533}{754951} a^{20} + \frac{7720}{754951} a^{19} + \frac{366192}{754951} a^{18} + \frac{363702}{754951} a^{17} + \frac{321430}{754951} a^{16} - \frac{74081}{754951} a^{15} - \frac{87043}{754951} a^{14} - \frac{298075}{754951} a^{13} + \frac{72645}{754951} a^{12} - \frac{85747}{754951} a^{11} - \frac{242076}{754951} a^{10} - \frac{312169}{754951} a^{9} + \frac{332913}{754951} a^{8} + \frac{288609}{754951} a^{7} + \frac{242824}{754951} a^{6} + \frac{361274}{754951} a^{5} + \frac{1930}{7783} a^{4} - \frac{318747}{754951} a^{3} + \frac{161757}{754951} a^{2} - \frac{52318}{754951} a + \frac{7827}{17557}$, $\frac{1}{1424880116117105488551658527949} a^{22} + \frac{760445898851806163691671}{1424880116117105488551658527949} a^{21} - \frac{11731147140587931675190947439}{1424880116117105488551658527949} a^{20} + \frac{16517348045468643320241954208}{1424880116117105488551658527949} a^{19} - \frac{392266998589102181978954831679}{1424880116117105488551658527949} a^{18} - \frac{453160600122698737131456859472}{1424880116117105488551658527949} a^{17} - \frac{591812284922908894325999876630}{1424880116117105488551658527949} a^{16} - \frac{304118660702128975433196696289}{1424880116117105488551658527949} a^{15} + \frac{591299700161782929479439974537}{1424880116117105488551658527949} a^{14} - \frac{224213291241531700816956649405}{1424880116117105488551658527949} a^{13} - \frac{703611615285089579928594527900}{1424880116117105488551658527949} a^{12} + \frac{652026345437595812768557348917}{1424880116117105488551658527949} a^{11} - \frac{4471401494433208405902384462}{14689485733166035964450087917} a^{10} - \frac{115845137743880685202933417833}{1424880116117105488551658527949} a^{9} - \frac{142357881441246291245340579092}{1424880116117105488551658527949} a^{8} + \frac{270211501011554981974562726251}{1424880116117105488551658527949} a^{7} - \frac{555497250160671734426512263033}{1424880116117105488551658527949} a^{6} - \frac{79940787894248029944425140770}{1424880116117105488551658527949} a^{5} + \frac{173163381751297406804763935603}{1424880116117105488551658527949} a^{4} - \frac{278515365747601056858491545903}{1424880116117105488551658527949} a^{3} + \frac{602682006965624574094796952891}{1424880116117105488551658527949} a^{2} - \frac{239609006807047678926723835309}{1424880116117105488551658527949} a + \frac{1212150684671470448218646809}{33136746886444313687247872743}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $22$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22066241000437346.10236048207 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 23 |
| The 23 conjugacy class representatives for $C_{23}$ |
| Character table for $C_{23}$ is not computed |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{23}$ | $23$ | $23$ | $23$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 139 | Data not computed | ||||||