Normalized defining polynomial
\( x^{23} - x^{22} - 286 x^{21} + 61 x^{20} + 32489 x^{19} + 14967 x^{18} - 1928206 x^{17} - 2239956 x^{16} + 65439786 x^{15} + 128285990 x^{14} - 1279328514 x^{13} - 3758213062 x^{12} + 12892455511 x^{11} + 58719404143 x^{10} - 31105194350 x^{9} - 448954503771 x^{8} - 491325793721 x^{7} + 1084631540509 x^{6} + 3053149451318 x^{5} + 2305895458302 x^{4} - 281144721703 x^{3} - 1007901237378 x^{2} - 154197339893 x + 118359867167 \)
Invariants
| Degree: | $23$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[23, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12687910093209570367523581223700258577242701778943851443146801=599^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $453.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $599$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(599\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{599}(384,·)$, $\chi_{599}(1,·)$, $\chi_{599}(322,·)$, $\chi_{599}(323,·)$, $\chi_{599}(324,·)$, $\chi_{599}(441,·)$, $\chi_{599}(578,·)$, $\chi_{599}(18,·)$, $\chi_{599}(405,·)$, $\chi_{599}(151,·)$, $\chi_{599}(39,·)$, $\chi_{599}(103,·)$, $\chi_{599}(221,·)$, $\chi_{599}(480,·)$, $\chi_{599}(102,·)$, $\chi_{599}(423,·)$, $\chi_{599}(233,·)$, $\chi_{599}(426,·)$, $\chi_{599}(427,·)$, $\chi_{599}(498,·)$, $\chi_{599}(57,·)$, $\chi_{599}(379,·)$, $\chi_{599}(254,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{19} a^{13} - \frac{6}{19} a^{12} + \frac{3}{19} a^{11} - \frac{7}{19} a^{9} + \frac{4}{19} a^{8} - \frac{8}{19} a^{7} - \frac{2}{19} a^{6} + \frac{5}{19} a^{5} - \frac{5}{19} a^{4} + \frac{1}{19} a^{3} + \frac{9}{19} a^{2} + \frac{5}{19} a$, $\frac{1}{19} a^{14} + \frac{5}{19} a^{12} - \frac{1}{19} a^{11} - \frac{7}{19} a^{10} - \frac{3}{19} a^{8} + \frac{7}{19} a^{7} - \frac{7}{19} a^{6} + \frac{6}{19} a^{5} + \frac{9}{19} a^{4} - \frac{4}{19} a^{3} + \frac{2}{19} a^{2} - \frac{8}{19} a$, $\frac{1}{19} a^{15} - \frac{9}{19} a^{12} - \frac{3}{19} a^{11} - \frac{6}{19} a^{9} + \frac{6}{19} a^{8} - \frac{5}{19} a^{7} - \frac{3}{19} a^{6} + \frac{3}{19} a^{5} + \frac{2}{19} a^{4} - \frac{3}{19} a^{3} + \frac{4}{19} a^{2} - \frac{6}{19} a$, $\frac{1}{19} a^{16} + \frac{8}{19} a^{11} - \frac{6}{19} a^{10} - \frac{7}{19} a^{8} + \frac{1}{19} a^{7} + \frac{4}{19} a^{6} + \frac{9}{19} a^{5} + \frac{9}{19} a^{4} - \frac{6}{19} a^{3} - \frac{1}{19} a^{2} + \frac{7}{19} a$, $\frac{1}{19} a^{17} + \frac{8}{19} a^{12} - \frac{6}{19} a^{11} - \frac{7}{19} a^{9} + \frac{1}{19} a^{8} + \frac{4}{19} a^{7} + \frac{9}{19} a^{6} + \frac{9}{19} a^{5} - \frac{6}{19} a^{4} - \frac{1}{19} a^{3} + \frac{7}{19} a^{2}$, $\frac{1}{19} a^{18} + \frac{4}{19} a^{12} - \frac{5}{19} a^{11} - \frac{7}{19} a^{10} - \frac{9}{19} a^{8} - \frac{3}{19} a^{7} + \frac{6}{19} a^{6} - \frac{8}{19} a^{5} + \frac{1}{19} a^{4} - \frac{1}{19} a^{3} + \frac{4}{19} a^{2} - \frac{2}{19} a$, $\frac{1}{19} a^{19} - \frac{1}{19} a$, $\frac{1}{361} a^{20} + \frac{1}{361} a^{19} + \frac{6}{361} a^{18} + \frac{4}{361} a^{17} + \frac{1}{361} a^{16} - \frac{9}{361} a^{15} + \frac{4}{361} a^{14} - \frac{5}{361} a^{13} - \frac{98}{361} a^{12} + \frac{4}{19} a^{11} - \frac{3}{19} a^{10} + \frac{23}{361} a^{9} - \frac{162}{361} a^{8} + \frac{17}{361} a^{7} + \frac{47}{361} a^{6} + \frac{7}{361} a^{5} - \frac{4}{361} a^{4} + \frac{47}{361} a^{3} + \frac{91}{361} a^{2} - \frac{161}{361} a + \frac{9}{19}$, $\frac{1}{482235713} a^{21} + \frac{506172}{482235713} a^{20} - \frac{10573825}{482235713} a^{19} - \frac{8592775}{482235713} a^{18} - \frac{8479940}{482235713} a^{17} - \frac{9427684}{482235713} a^{16} - \frac{31020}{1335833} a^{15} - \frac{1568658}{482235713} a^{14} + \frac{3778377}{482235713} a^{13} - \frac{70926387}{482235713} a^{12} + \frac{10331432}{25380827} a^{11} - \frac{17909073}{482235713} a^{10} + \frac{169923646}{482235713} a^{9} - \frac{226873184}{482235713} a^{8} + \frac{204588377}{482235713} a^{7} + \frac{215883882}{482235713} a^{6} - \frac{108521581}{482235713} a^{5} + \frac{89534121}{482235713} a^{4} + \frac{5550649}{25380827} a^{3} - \frac{94702912}{482235713} a^{2} - \frac{43551595}{482235713} a - \frac{29816}{60287}$, $\frac{1}{933498861856968310907750652351989036348155790263090067093932176032391941587410163935012580461501049} a^{22} - \frac{645540470883649225755699286611344990029145075275387604069915257002690300045225093385168597}{933498861856968310907750652351989036348155790263090067093932176032391941587410163935012580461501049} a^{21} - \frac{453416331601488771356434435636142379737906164300295963729625222861734394462325249224959282969275}{933498861856968310907750652351989036348155790263090067093932176032391941587410163935012580461501049} a^{20} + \frac{9484607249406711162526085599376602552503391633568862687234606083985640023448981896428080318536790}{933498861856968310907750652351989036348155790263090067093932176032391941587410163935012580461501049} a^{19} - \frac{1284825625308078524485579150154104198948115098112241464992606335833652634131083092826620628396244}{933498861856968310907750652351989036348155790263090067093932176032391941587410163935012580461501049} a^{18} + \frac{5022273146666083055074117986719255568962390071806826757701787028820040415852371957981595619275110}{933498861856968310907750652351989036348155790263090067093932176032391941587410163935012580461501049} a^{17} + \frac{22699571891122412229823456878932534547334928538763625378029262883150292458649007011116885952746784}{933498861856968310907750652351989036348155790263090067093932176032391941587410163935012580461501049} a^{16} + \frac{19442725421927418241902851469215305388851506909423313076066687763280744577696130589602439436669651}{933498861856968310907750652351989036348155790263090067093932176032391941587410163935012580461501049} a^{15} - \frac{15548692191885904643874635743713477998228857621855252656167121589690369030650501271182661594171807}{933498861856968310907750652351989036348155790263090067093932176032391941587410163935012580461501049} a^{14} - \frac{12968655457262858918956201988376090086095570236625408067309640273355883401377272994143246806338609}{933498861856968310907750652351989036348155790263090067093932176032391941587410163935012580461501049} a^{13} - \frac{105233662005660974585968970678003162827502596179725763975575789792643513055248609331012808611095530}{933498861856968310907750652351989036348155790263090067093932176032391941587410163935012580461501049} a^{12} - \frac{27220126405573734983179334235685983039174080429920411084384701820625727035296853937224900212644970}{933498861856968310907750652351989036348155790263090067093932176032391941587410163935012580461501049} a^{11} + \frac{228389891027783625467723808394391015140738587051053479374231889468607220897494081287940195100860744}{933498861856968310907750652351989036348155790263090067093932176032391941587410163935012580461501049} a^{10} + \frac{160995188934897405333940838364198892134204212771308943664830312530165052994406824076148908101298829}{933498861856968310907750652351989036348155790263090067093932176032391941587410163935012580461501049} a^{9} + \frac{296767417712595315946268754510512318397479848601285991640874937535279589380030542763416736403077998}{933498861856968310907750652351989036348155790263090067093932176032391941587410163935012580461501049} a^{8} - \frac{440855670652562317100168973622746121057499906991314836493572642205574930499035787455193089272741400}{933498861856968310907750652351989036348155790263090067093932176032391941587410163935012580461501049} a^{7} - \frac{285756184143543804289073713419484177163062847005822651710287946800425964214087057205546857578947355}{933498861856968310907750652351989036348155790263090067093932176032391941587410163935012580461501049} a^{6} + \frac{219320458098110871353314655509122283423470280126976267204661098215165193631922313546130684699151377}{933498861856968310907750652351989036348155790263090067093932176032391941587410163935012580461501049} a^{5} + \frac{141565598392590450369397329718334359846415583820227393499816092408191484294924719770782854530230217}{933498861856968310907750652351989036348155790263090067093932176032391941587410163935012580461501049} a^{4} + \frac{154921642654569578355164704448379339393176374617173249031961333339467570436311717129459285076710342}{933498861856968310907750652351989036348155790263090067093932176032391941587410163935012580461501049} a^{3} - \frac{1863260604566893844738716998774831653983243629373413040365240676003889693390806431578989440215508}{5589813544053702460525453008095742732623687366844850701161270515164023602319821340928219044679647} a^{2} - \frac{314382443460021697655510741384639329254991847931774571085200047537003496208944953580263287466765809}{933498861856968310907750652351989036348155790263090067093932176032391941587410163935012580461501049} a - \frac{40699349156907659244388946450717077206015843610355399339019061431943336127964096356511365298937}{116701945475305452044974453350667462976391522723226661719456454060806593522616597566572394106951}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $22$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 342364856486088370000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 23 |
| The 23 conjugacy class representatives for $C_{23}$ |
| Character table for $C_{23}$ is not computed |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{23}$ | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 599 | Data not computed | ||||||