Normalized defining polynomial
\( x^{23} - 11 x^{22} - 49 x^{21} + 847 x^{20} + 333 x^{19} - 27195 x^{18} + 26294 x^{17} + 472463 x^{16} - 807088 x^{15} - 4813093 x^{14} + 11025393 x^{13} + 28842666 x^{12} - 85904881 x^{11} - 92539623 x^{10} + 401542378 x^{9} + 86961683 x^{8} - 1107595373 x^{7} + 357772746 x^{6} + 1662322180 x^{5} - 1168158873 x^{4} - 1079773672 x^{3} + 1139070319 x^{2} + 85927891 x - 235248461 \)
Invariants
| Degree: | $23$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[23, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1260708975389644854773397594813026107886327713657=23593^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $123.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23593$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{5} a^{13} - \frac{2}{5} a^{12} - \frac{1}{5} a^{11} + \frac{1}{5} a^{10} - \frac{2}{5} a^{9} + \frac{2}{5} a^{8} - \frac{1}{5} a^{7} + \frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{2}{5} a^{4} - \frac{1}{5} a^{3} + \frac{1}{5} a^{2} + \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{14} - \frac{1}{5} a^{11} - \frac{2}{5} a^{9} - \frac{2}{5} a^{8} - \frac{1}{5} a^{7} - \frac{2}{5} a^{5} - \frac{2}{5} a^{4} - \frac{1}{5} a^{3} - \frac{1}{5} a^{2} - \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{15} - \frac{1}{5} a^{12} - \frac{2}{5} a^{10} - \frac{2}{5} a^{9} - \frac{1}{5} a^{8} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} - \frac{1}{5} a^{4} - \frac{1}{5} a^{3} - \frac{2}{5} a^{2} - \frac{2}{5} a$, $\frac{1}{5} a^{16} - \frac{2}{5} a^{12} + \frac{2}{5} a^{11} - \frac{1}{5} a^{10} + \frac{2}{5} a^{9} + \frac{2}{5} a^{8} + \frac{2}{5} a^{7} - \frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{1}{5} a^{4} + \frac{2}{5} a^{3} - \frac{1}{5} a^{2} + \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{35} a^{17} + \frac{3}{35} a^{16} - \frac{3}{35} a^{15} + \frac{2}{35} a^{14} + \frac{3}{35} a^{13} + \frac{4}{35} a^{12} - \frac{12}{35} a^{11} + \frac{1}{7} a^{10} - \frac{3}{7} a^{9} + \frac{17}{35} a^{8} + \frac{3}{35} a^{7} + \frac{2}{7} a^{6} + \frac{4}{35} a^{5} + \frac{9}{35} a^{4} + \frac{1}{35} a^{3} - \frac{12}{35} a^{2} + \frac{17}{35} a - \frac{1}{5}$, $\frac{1}{175} a^{18} + \frac{1}{175} a^{17} - \frac{9}{175} a^{16} + \frac{1}{175} a^{15} - \frac{8}{175} a^{14} - \frac{2}{175} a^{13} + \frac{22}{175} a^{12} + \frac{36}{175} a^{11} + \frac{24}{175} a^{10} - \frac{13}{35} a^{9} + \frac{12}{35} a^{8} + \frac{11}{175} a^{7} - \frac{72}{175} a^{6} - \frac{6}{175} a^{5} + \frac{4}{175} a^{4} + \frac{2}{5} a^{3} - \frac{8}{175} a^{2} + \frac{22}{175} a - \frac{1}{25}$, $\frac{1}{175} a^{19} + \frac{1}{35} a^{16} - \frac{4}{175} a^{15} - \frac{9}{175} a^{14} - \frac{16}{175} a^{13} + \frac{54}{175} a^{12} + \frac{78}{175} a^{11} + \frac{31}{175} a^{10} + \frac{9}{35} a^{9} - \frac{54}{175} a^{8} - \frac{18}{175} a^{7} + \frac{61}{175} a^{6} - \frac{11}{35} a^{5} + \frac{16}{175} a^{4} - \frac{68}{175} a^{3} + \frac{3}{35} a^{2} - \frac{69}{175} a - \frac{9}{25}$, $\frac{1}{38675} a^{20} + \frac{1}{2275} a^{19} - \frac{57}{38675} a^{18} + \frac{473}{38675} a^{17} + \frac{2694}{38675} a^{16} + \frac{1336}{38675} a^{15} - \frac{479}{5525} a^{14} - \frac{209}{38675} a^{13} + \frac{19307}{38675} a^{12} + \frac{409}{1547} a^{11} + \frac{8409}{38675} a^{10} - \frac{13084}{38675} a^{9} + \frac{19269}{38675} a^{8} - \frac{3777}{38675} a^{7} + \frac{4666}{38675} a^{6} - \frac{6702}{38675} a^{5} + \frac{678}{2275} a^{4} - \frac{783}{5525} a^{3} + \frac{18387}{38675} a^{2} + \frac{1693}{7735} a - \frac{1741}{5525}$, $\frac{1}{143677625} a^{21} - \frac{43}{11052125} a^{20} - \frac{319028}{143677625} a^{19} + \frac{47767}{28735525} a^{18} + \frac{1279456}{143677625} a^{17} + \frac{1951101}{20525375} a^{16} + \frac{398884}{11052125} a^{15} + \frac{2750968}{28735525} a^{14} + \frac{2516354}{28735525} a^{13} + \frac{2626532}{143677625} a^{12} + \frac{27396547}{143677625} a^{11} + \frac{47425523}{143677625} a^{10} + \frac{59661928}{143677625} a^{9} - \frac{41305}{1149421} a^{8} - \frac{834766}{4105075} a^{7} - \frac{31524652}{143677625} a^{6} - \frac{27479182}{143677625} a^{5} + \frac{22579699}{143677625} a^{4} - \frac{100462}{5747105} a^{3} - \frac{15020127}{143677625} a^{2} - \frac{218033}{8451625} a + \frac{7227502}{20525375}$, $\frac{1}{74406008856859361075612185238231424015995909375} a^{22} - \frac{42985230419845334312638743997565951213}{14881201771371872215122437047646284803199181875} a^{21} + \frac{6789212871322115127431249366102095797928}{2010973212347550299340869871303552000432321875} a^{20} - \frac{191793171585373798346441706674099444952636047}{74406008856859361075612185238231424015995909375} a^{19} + \frac{145283419950328810229128670754761615761225496}{74406008856859361075612185238231424015995909375} a^{18} + \frac{471088944799234469390609006422030092098282521}{74406008856859361075612185238231424015995909375} a^{17} + \frac{111681966811826441847133081406094538295814007}{14881201771371872215122437047646284803199181875} a^{16} - \frac{6538770826303656865582375493338419345108175552}{74406008856859361075612185238231424015995909375} a^{15} + \frac{15334332787293204432164180550362953826001992}{2125885967338838887874633863949469257599883125} a^{14} + \frac{525624491568802726133360284728472487850090402}{74406008856859361075612185238231424015995909375} a^{13} + \frac{3990742057196638870398457164537755970213268687}{14881201771371872215122437047646284803199181875} a^{12} + \frac{34903616759406359250962186280515851551655990426}{74406008856859361075612185238231424015995909375} a^{11} + \frac{3291595939215820235174605298270306130391342173}{14881201771371872215122437047646284803199181875} a^{10} + \frac{2918271303681017236938128625964829246569318667}{74406008856859361075612185238231424015995909375} a^{9} - \frac{3826332324754454008769844017300969698337039453}{14881201771371872215122437047646284803199181875} a^{8} - \frac{19345854013287887302036770482827322534493696257}{74406008856859361075612185238231424015995909375} a^{7} - \frac{5161518345584907474569026966304578268743876724}{14881201771371872215122437047646284803199181875} a^{6} - \frac{10392646735124524936526516695217240469145711149}{74406008856859361075612185238231424015995909375} a^{5} - \frac{8289039896838961372229165040930952789471563899}{74406008856859361075612185238231424015995909375} a^{4} - \frac{3198403198876267297767026680514471561223683636}{10629429836694194439373169319747346287999415625} a^{3} - \frac{2541044760254416596064444303807056706801810014}{74406008856859361075612185238231424015995909375} a^{2} - \frac{855418117993715770237254258507319146607019232}{2976240354274374443024487409529256960639836375} a + \frac{934794973503648469114010228956229674490882138}{10629429836694194439373169319747346287999415625}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $22$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 122630019967000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 46 |
| The 13 conjugacy class representatives for $D_{23}$ |
| Character table for $D_{23}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $23$ | $23$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | $23$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | $23$ | $23$ | $23$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $23$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 23593 | Data not computed | ||||||