Properties

Label 23.1.990...656.1
Degree $23$
Signature $[1, 11]$
Discriminant $-9.904\times 10^{37}$
Root discriminant \(44.87\)
Ramified primes see page
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $S_{23}$ (as 23T7)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^23 + 8*x - 8)
 
gp: K = bnfinit(y^23 + 8*y - 8, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^23 + 8*x - 8);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^23 + 8*x - 8)
 

\( x^{23} + 8x - 8 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $23$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[1, 11]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-99035448947556141209079331471444934656\) \(\medspace = -\,2^{22}\cdot 19\cdot 2617\cdot 310741\cdot 1528181322635255601073\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(44.87\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{22/23}19^{1/2}2617^{1/2}310741^{1/2}1528181322635255601073^{1/2}\approx 9429900711203802.0$
Ramified primes:   \(2\), \(19\), \(2617\), \(310741\), \(1528181322635255601073\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  $\Q(\sqrt{-23611\!\cdots\!99239}$)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}$, $\frac{1}{2}a^{9}$, $\frac{1}{2}a^{10}$, $\frac{1}{2}a^{11}$, $\frac{1}{2}a^{12}$, $\frac{1}{2}a^{13}$, $\frac{1}{2}a^{14}$, $\frac{1}{2}a^{15}$, $\frac{1}{4}a^{16}$, $\frac{1}{4}a^{17}$, $\frac{1}{4}a^{18}$, $\frac{1}{4}a^{19}$, $\frac{1}{4}a^{20}$, $\frac{1}{4}a^{21}$, $\frac{1}{4}a^{22}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $11$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a-1$, $\frac{1}{2}a^{8}-a+1$, $\frac{1}{4}a^{22}+\frac{1}{4}a^{21}-\frac{1}{4}a^{19}-\frac{1}{4}a^{18}+\frac{1}{4}a^{16}+\frac{1}{2}a^{15}+\frac{1}{2}a^{14}-\frac{1}{2}a^{12}-\frac{1}{2}a^{11}+\frac{1}{2}a^{9}+\frac{1}{2}a^{8}-a+1$, $\frac{1}{4}a^{22}-\frac{1}{4}a^{18}-\frac{1}{2}a^{17}-\frac{1}{2}a^{16}-\frac{1}{2}a^{15}-\frac{1}{2}a^{14}-a^{13}-a^{12}-\frac{1}{2}a^{11}-\frac{1}{2}a^{10}-a^{9}-a^{8}-a^{5}+a^{3}+3$, $\frac{1}{4}a^{22}+\frac{1}{4}a^{21}+\frac{1}{4}a^{20}-\frac{1}{4}a^{18}-\frac{1}{4}a^{17}-\frac{1}{4}a^{16}+\frac{1}{2}a^{13}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-a^{8}+a^{5}+a^{3}-a^{2}-a+1$, $\frac{1}{4}a^{21}+\frac{1}{2}a^{19}+\frac{1}{4}a^{17}+\frac{1}{2}a^{14}+\frac{1}{2}a^{12}-\frac{1}{2}a^{11}+\frac{1}{2}a^{10}-\frac{1}{2}a^{8}-a^{6}+a^{5}-a^{4}+a^{3}-a^{2}-a+1$, $\frac{1}{4}a^{22}+\frac{1}{4}a^{21}+\frac{1}{4}a^{20}-\frac{1}{4}a^{17}+\frac{1}{2}a^{14}+\frac{1}{2}a^{13}+\frac{1}{2}a^{12}-\frac{1}{2}a^{10}-a^{9}-a^{8}-a^{7}+a^{4}-a+1$, $\frac{1}{4}a^{22}+\frac{1}{4}a^{20}+\frac{1}{2}a^{19}+\frac{1}{2}a^{17}+\frac{1}{4}a^{16}+\frac{1}{2}a^{14}+\frac{1}{2}a^{13}-\frac{1}{2}a^{12}+a^{11}-\frac{1}{2}a^{9}+\frac{1}{2}a^{8}-a^{6}+a^{5}-a^{4}-a^{3}+2a^{2}-2a+1$, $\frac{1}{2}a^{21}-\frac{1}{2}a^{19}+\frac{1}{2}a^{18}+\frac{3}{4}a^{17}-\frac{3}{4}a^{16}-\frac{1}{2}a^{15}+\frac{3}{2}a^{14}-\frac{3}{2}a^{12}+\frac{1}{2}a^{11}+\frac{3}{2}a^{10}-\frac{3}{2}a^{9}-\frac{1}{2}a^{8}+a^{7}-a^{5}+a^{4}-a^{3}+2a-1$, $\frac{3}{4}a^{22}+a^{21}+\frac{5}{4}a^{20}+\frac{3}{2}a^{19}+\frac{3}{2}a^{18}+\frac{5}{4}a^{17}+a^{16}+\frac{1}{2}a^{15}-\frac{1}{2}a^{13}-a^{12}-a^{11}-a^{10}-a^{9}-\frac{1}{2}a^{8}-a^{3}-a^{2}-2a+3$, $a^{22}+\frac{3}{4}a^{21}+\frac{3}{4}a^{20}+\frac{1}{2}a^{19}+\frac{1}{2}a^{18}+\frac{1}{4}a^{17}+\frac{1}{4}a^{16}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-a^{8}-a^{7}-2a^{6}-a^{5}-2a^{4}-a^{3}-2a^{2}+7$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 13784529892.7 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{11}\cdot 13784529892.7 \cdot 1}{2\cdot\sqrt{99035448947556141209079331471444934656}}\cr\approx \mathstrut & 0.834593838464 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^23 + 8*x - 8)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^23 + 8*x - 8, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^23 + 8*x - 8);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^23 + 8*x - 8);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_{23}$ (as 23T7):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 25852016738884976640000
The 1255 conjugacy class representatives for $S_{23}$ are not computed
Character table for $S_{23}$ is not computed

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 46 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.9.0.1}{9} }{,}\,{\href{/padicField/3.7.0.1}{7} }{,}\,{\href{/padicField/3.5.0.1}{5} }{,}\,{\href{/padicField/3.2.0.1}{2} }$ $15{,}\,{\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.2.0.1}{2} }$ ${\href{/padicField/7.12.0.1}{12} }{,}\,{\href{/padicField/7.7.0.1}{7} }{,}\,{\href{/padicField/7.2.0.1}{2} }{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ $17{,}\,{\href{/padicField/11.3.0.1}{3} }{,}\,{\href{/padicField/11.2.0.1}{2} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ ${\href{/padicField/13.10.0.1}{10} }{,}\,{\href{/padicField/13.8.0.1}{8} }{,}\,{\href{/padicField/13.3.0.1}{3} }{,}\,{\href{/padicField/13.2.0.1}{2} }$ ${\href{/padicField/17.10.0.1}{10} }{,}\,{\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.5.0.1}{5} }{,}\,{\href{/padicField/17.1.0.1}{1} }^{2}$ R $22{,}\,{\href{/padicField/23.1.0.1}{1} }$ $23$ $22{,}\,{\href{/padicField/31.1.0.1}{1} }$ ${\href{/padicField/37.14.0.1}{14} }{,}\,{\href{/padicField/37.7.0.1}{7} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ $17{,}\,{\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ ${\href{/padicField/43.9.0.1}{9} }{,}\,{\href{/padicField/43.8.0.1}{8} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ $17{,}\,{\href{/padicField/47.5.0.1}{5} }{,}\,{\href{/padicField/47.1.0.1}{1} }$ ${\href{/padicField/53.14.0.1}{14} }{,}\,{\href{/padicField/53.5.0.1}{5} }{,}\,{\href{/padicField/53.3.0.1}{3} }{,}\,{\href{/padicField/53.1.0.1}{1} }$ ${\href{/padicField/59.14.0.1}{14} }{,}\,{\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.3.0.1}{3} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.23.22.1$x^{23} + 2$$23$$1$$22$$C_{23}:C_{11}$$[\ ]_{23}^{11}$
\(19\) Copy content Toggle raw display $\Q_{19}$$x + 17$$1$$1$$0$Trivial$[\ ]$
19.2.1.2$x^{2} + 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.3.0.1$x^{3} + 4 x + 17$$1$$3$$0$$C_3$$[\ ]^{3}$
19.17.0.1$x^{17} + 2 x + 17$$1$$17$$0$$C_{17}$$[\ ]^{17}$
\(2617\) Copy content Toggle raw display $\Q_{2617}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{2617}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $16$$1$$16$$0$$C_{16}$$[\ ]^{16}$
\(310741\) Copy content Toggle raw display Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $7$$1$$7$$0$$C_7$$[\ ]^{7}$
Deg $14$$1$$14$$0$$C_{14}$$[\ ]^{14}$
\(152\!\cdots\!073\) Copy content Toggle raw display $\Q_{15\!\cdots\!73}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $4$$1$$4$$0$$C_4$$[\ ]^{4}$
Deg $13$$1$$13$$0$$C_{13}$$[\ ]^{13}$