Normalized defining polynomial
\( x^{23} - 23 x^{20} + 184 x^{19} - 1334 x^{18} + 3680 x^{17} - 7567 x^{16} + 3381 x^{15} + 48346 x^{14} - 105455 x^{13} + 165048 x^{12} - 1033942 x^{11} + 3237457 x^{10} - 6694426 x^{9} + 24074675 x^{8} - 57748676 x^{7} + 58090042 x^{6} - 24771506 x^{5} + 67771087 x^{4} - 75769360 x^{3} + 19385596 x^{2} - 386078 x + 1437601 \)
Invariants
| Degree: | $23$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-865004941741938633917747707002884268046728983=-\,23^{33}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $89.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} + \frac{2}{5} a^{10} + \frac{1}{5} a^{9} + \frac{2}{5} a^{8} + \frac{2}{5} a^{6} - \frac{2}{5} a^{5} + \frac{1}{5} a^{3} + \frac{1}{5} a^{2} - \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{13} + \frac{2}{5} a^{11} + \frac{1}{5} a^{10} + \frac{2}{5} a^{9} + \frac{2}{5} a^{7} - \frac{2}{5} a^{6} + \frac{1}{5} a^{4} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2} + \frac{1}{5} a$, $\frac{1}{5} a^{14} + \frac{1}{5} a^{11} - \frac{2}{5} a^{10} - \frac{2}{5} a^{9} - \frac{2}{5} a^{8} - \frac{2}{5} a^{7} + \frac{1}{5} a^{6} + \frac{1}{5} a^{4} + \frac{2}{5} a^{3} - \frac{1}{5} a^{2} + \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{15} - \frac{2}{5} a^{11} + \frac{1}{5} a^{10} + \frac{2}{5} a^{9} + \frac{1}{5} a^{8} + \frac{1}{5} a^{7} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} + \frac{2}{5} a^{4} - \frac{2}{5} a^{3} + \frac{1}{5} a^{2} - \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{16} + \frac{1}{5} a^{11} + \frac{1}{5} a^{10} - \frac{2}{5} a^{9} - \frac{2}{5} a^{7} + \frac{2}{5} a^{6} - \frac{2}{5} a^{5} - \frac{2}{5} a^{4} - \frac{2}{5} a^{3} + \frac{1}{5} a^{2} + \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{35} a^{17} - \frac{2}{35} a^{16} - \frac{3}{35} a^{15} + \frac{2}{35} a^{14} + \frac{1}{35} a^{12} + \frac{2}{35} a^{11} - \frac{16}{35} a^{10} - \frac{11}{35} a^{9} + \frac{1}{35} a^{8} + \frac{2}{5} a^{7} + \frac{12}{35} a^{6} + \frac{8}{35} a^{5} + \frac{13}{35} a^{4} + \frac{1}{7} a^{2} + \frac{3}{7} a + \frac{2}{7}$, $\frac{1}{12425} a^{18} + \frac{46}{12425} a^{17} + \frac{874}{12425} a^{16} + \frac{187}{12425} a^{15} - \frac{1143}{12425} a^{14} + \frac{1121}{12425} a^{13} - \frac{874}{12425} a^{12} - \frac{2979}{12425} a^{11} + \frac{313}{12425} a^{10} - \frac{3761}{12425} a^{9} - \frac{2654}{12425} a^{8} - \frac{158}{497} a^{7} - \frac{726}{2485} a^{6} + \frac{3596}{12425} a^{5} - \frac{713}{12425} a^{4} - \frac{2221}{12425} a^{3} - \frac{4078}{12425} a^{2} + \frac{6043}{12425} a - \frac{5414}{12425}$, $\frac{1}{12425} a^{19} - \frac{177}{12425} a^{17} + \frac{14}{1775} a^{16} - \frac{103}{2485} a^{15} + \frac{1159}{12425} a^{14} - \frac{51}{2485} a^{13} + \frac{29}{355} a^{12} - \frac{4653}{12425} a^{11} - \frac{5379}{12425} a^{10} + \frac{2082}{12425} a^{9} + \frac{4889}{12425} a^{8} - \frac{34}{497} a^{7} - \frac{3019}{12425} a^{6} - \frac{6024}{12425} a^{5} - \frac{754}{1775} a^{4} + \frac{6143}{12425} a^{3} - \frac{4814}{12425} a^{2} - \frac{4007}{12425} a - \frac{6201}{12425}$, $\frac{1}{12425} a^{20} + \frac{3}{497} a^{17} - \frac{136}{1775} a^{16} - \frac{887}{12425} a^{15} - \frac{216}{12425} a^{14} + \frac{632}{12425} a^{13} - \frac{1021}{12425} a^{12} + \frac{2678}{12425} a^{11} + \frac{1748}{12425} a^{10} + \frac{3042}{12425} a^{9} + \frac{3317}{12425} a^{8} - \frac{1399}{12425} a^{7} + \frac{3956}{12425} a^{6} - \frac{98}{1775} a^{5} + \frac{4902}{12425} a^{4} - \frac{2816}{12425} a^{3} + \frac{6197}{12425} a^{2} - \frac{673}{2485} a - \frac{3683}{12425}$, $\frac{1}{11617375} a^{21} - \frac{347}{11617375} a^{20} + \frac{333}{11617375} a^{19} + \frac{333}{11617375} a^{18} - \frac{18218}{2323475} a^{17} - \frac{80526}{1659625} a^{16} - \frac{20648}{683375} a^{15} - \frac{9193}{163625} a^{14} + \frac{46103}{11617375} a^{13} - \frac{73632}{1056125} a^{12} + \frac{3874686}{11617375} a^{11} - \frac{5251947}{11617375} a^{10} + \frac{2327211}{11617375} a^{9} + \frac{5104192}{11617375} a^{8} + \frac{3434124}{11617375} a^{7} - \frac{812796}{2323475} a^{6} + \frac{90952}{331925} a^{5} + \frac{1652327}{11617375} a^{4} - \frac{27029}{331925} a^{3} + \frac{343198}{2323475} a^{2} - \frac{656542}{2323475} a - \frac{196844}{1056125}$, $\frac{1}{2461648796411609512235684626517239192903941282592887871768946015296800625} a^{22} + \frac{717919717207772954988950749474727730815186122890201966118887836}{22583933912033114791153069968048065989944415436631998823568312066943125} a^{21} + \frac{853554757478822634488790126039858661514328991478402954761188980014}{22583933912033114791153069968048065989944415436631998823568312066943125} a^{20} - \frac{21659351521636686841759737754774999308426623841454111258533688654149}{2461648796411609512235684626517239192903941282592887871768946015296800625} a^{19} - \frac{31025228949168194547353229797284243677282143941091080400558162971342}{2461648796411609512235684626517239192903941282592887871768946015296800625} a^{18} + \frac{19458250793229746064590924326802502140028037448958744828489063677306658}{2461648796411609512235684626517239192903941282592887871768946015296800625} a^{17} + \frac{1350854969754432918183499194819003464957251626625234196635266794359553}{50237730539012439025218053602392636589876352705977303505488694189730625} a^{16} - \frac{789990115237838555727067932769994205366463309804787944912363039631361}{50237730539012439025218053602392636589876352705977303505488694189730625} a^{15} - \frac{82550543627437307150626988424691399185722778238081827024721646447533}{1152997094337990403857463525300814610259457275219151227994822489600375} a^{14} + \frac{5020162742340958947724243044696471770875370521387616329696965392239641}{223786254219237228385062238774294472082176480235717079251722365026981875} a^{13} - \frac{221496429840752319624995560486727397486860271648460945143263071652577706}{2461648796411609512235684626517239192903941282592887871768946015296800625} a^{12} + \frac{481043938227295801090895268234547747222471197986910505412459145780623204}{2461648796411609512235684626517239192903941282592887871768946015296800625} a^{11} - \frac{1057395824741148196312791109670645778340477993007085208774772054739610071}{2461648796411609512235684626517239192903941282592887871768946015296800625} a^{10} - \frac{1142865039647050597542513852252333691515585386091541211346826137124211072}{2461648796411609512235684626517239192903941282592887871768946015296800625} a^{9} - \frac{7234959067927394525729048047615218940948939728333564463261454283819662}{144802870377153500719746154501014070170820075446640463045232118546870625} a^{8} - \frac{197453557348580125146182799218501290114066859468316150927248062482102796}{2461648796411609512235684626517239192903941282592887871768946015296800625} a^{7} + \frac{4256993490973321206507137368828069634717221985543559247857166710382963}{11449529285635393080165975007056926478622982709734362194274167513008375} a^{6} + \frac{572081992844176198450487433756948805110721718279504469529501346073320197}{2461648796411609512235684626517239192903941282592887871768946015296800625} a^{5} + \frac{391343694795237921818551024156960265011120317338820468188236910714538172}{2461648796411609512235684626517239192903941282592887871768946015296800625} a^{4} + \frac{187373614973337101652003910089878544580474374929414398042355687068156928}{492329759282321902447136925303447838580788256518577574353789203059360125} a^{3} - \frac{2071862662224077993015623006335801231035233272448245512269815240129951}{98465951856464380489427385060689567716157651303715514870757840611872025} a^{2} + \frac{90862712593420715254229004591919598190798217284881282931708493870905311}{223786254219237228385062238774294472082176480235717079251722365026981875} a + \frac{335266723755056727675337719404681206405112223745556740184290258893074}{2053084901093919526468460906186187817267674130602908983960755642449375}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35038470243900 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 46 |
| The 13 conjugacy class representatives for $D_{23}$ |
| Character table for $D_{23}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $23$ | $23$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | $23$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | R | $23$ | $23$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $23$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | $23$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | $23$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 23 | Data not computed | ||||||