Normalized defining polynomial
\( x^{23} - 2 x^{22} - 3 x^{21} + 13 x^{20} - 19 x^{19} + 21 x^{18} - 75 x^{16} + 202 x^{15} - 378 x^{14} + 596 x^{13} - 798 x^{12} + 955 x^{11} - 995 x^{10} + 849 x^{9} - 610 x^{8} + 384 x^{7} - 151 x^{6} + 2 x^{5} + 46 x^{4} - 37 x^{3} + 3 x^{2} + 20 x + 1 \)
Invariants
| Degree: | $23$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-8316624386164136054632388935703=-\,647^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $647$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{5} a^{15} + \frac{2}{5} a^{13} - \frac{1}{5} a^{12} - \frac{1}{5} a^{11} + \frac{2}{5} a^{10} - \frac{2}{5} a^{8} + \frac{2}{5} a^{7} - \frac{2}{5} a^{6} + \frac{2}{5} a^{5} + \frac{1}{5} a^{4} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2} - \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{16} + \frac{2}{5} a^{14} - \frac{1}{5} a^{13} - \frac{1}{5} a^{12} + \frac{2}{5} a^{11} - \frac{2}{5} a^{9} + \frac{2}{5} a^{8} - \frac{2}{5} a^{7} + \frac{2}{5} a^{6} + \frac{1}{5} a^{5} + \frac{1}{5} a^{4} - \frac{1}{5} a^{3} - \frac{2}{5} a^{2} - \frac{2}{5} a$, $\frac{1}{5} a^{17} - \frac{1}{5} a^{14} - \frac{1}{5} a^{12} + \frac{2}{5} a^{11} - \frac{1}{5} a^{10} + \frac{2}{5} a^{9} + \frac{2}{5} a^{8} - \frac{2}{5} a^{7} + \frac{2}{5} a^{5} + \frac{2}{5} a^{4} + \frac{1}{5} a^{3} - \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{18} + \frac{1}{5} a^{13} + \frac{1}{5} a^{12} - \frac{2}{5} a^{11} - \frac{1}{5} a^{10} + \frac{2}{5} a^{9} + \frac{1}{5} a^{8} + \frac{2}{5} a^{7} - \frac{1}{5} a^{5} + \frac{2}{5} a^{4} + \frac{1}{5} a^{3} - \frac{2}{5} a^{2} + \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{19} + \frac{1}{5} a^{14} + \frac{1}{5} a^{13} - \frac{2}{5} a^{12} - \frac{1}{5} a^{11} + \frac{2}{5} a^{10} + \frac{1}{5} a^{9} + \frac{2}{5} a^{8} - \frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{1}{5} a^{4} - \frac{2}{5} a^{3} + \frac{2}{5} a^{2} - \frac{2}{5} a$, $\frac{1}{275} a^{20} - \frac{3}{55} a^{19} + \frac{1}{25} a^{18} + \frac{6}{275} a^{17} + \frac{2}{25} a^{16} - \frac{4}{55} a^{15} + \frac{54}{275} a^{14} + \frac{1}{55} a^{13} - \frac{12}{25} a^{12} + \frac{42}{275} a^{11} + \frac{47}{275} a^{10} + \frac{42}{275} a^{9} - \frac{91}{275} a^{8} + \frac{73}{275} a^{7} - \frac{97}{275} a^{6} - \frac{73}{275} a^{5} + \frac{23}{275} a^{4} + \frac{26}{275} a^{3} + \frac{68}{275} a^{2} + \frac{39}{275} a + \frac{119}{275}$, $\frac{1}{193325} a^{21} + \frac{6}{17575} a^{20} - \frac{19079}{193325} a^{19} - \frac{8948}{193325} a^{18} - \frac{15937}{193325} a^{17} + \frac{9352}{193325} a^{16} + \frac{14164}{193325} a^{15} + \frac{93754}{193325} a^{14} - \frac{4952}{193325} a^{13} - \frac{5474}{38665} a^{12} + \frac{60099}{193325} a^{11} + \frac{52}{5225} a^{10} - \frac{8509}{17575} a^{9} + \frac{55512}{193325} a^{8} - \frac{17779}{193325} a^{7} - \frac{1212}{38665} a^{6} - \frac{12332}{38665} a^{5} + \frac{71629}{193325} a^{4} + \frac{47549}{193325} a^{3} + \frac{3233}{10175} a^{2} - \frac{187}{17575} a + \frac{15414}{193325}$, $\frac{1}{16889065325} a^{22} + \frac{6236}{16889065325} a^{21} + \frac{15050612}{16889065325} a^{20} + \frac{25039191}{456461225} a^{19} + \frac{1541886859}{16889065325} a^{18} + \frac{233319718}{16889065325} a^{17} + \frac{7588288}{456461225} a^{16} + \frac{934312404}{16889065325} a^{15} - \frac{4959075178}{16889065325} a^{14} - \frac{78682011}{3377813065} a^{13} + \frac{536483197}{16889065325} a^{12} + \frac{689341351}{16889065325} a^{11} + \frac{4786760163}{16889065325} a^{10} + \frac{148378891}{888898175} a^{9} + \frac{644631076}{3377813065} a^{8} + \frac{8099028858}{16889065325} a^{7} + \frac{5025800893}{16889065325} a^{6} + \frac{5105693096}{16889065325} a^{5} + \frac{1067482887}{16889065325} a^{4} - \frac{2095142937}{16889065325} a^{3} - \frac{4610451389}{16889065325} a^{2} - \frac{6103940692}{16889065325} a - \frac{3711736931}{16889065325}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1561186.27544 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 46 |
| The 13 conjugacy class representatives for $D_{23}$ |
| Character table for $D_{23}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $23$ | $23$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | $23$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | $23$ | $23$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | $23$ | $23$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $23$ | $23$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | $23$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 647 | Data not computed | ||||||