Normalized defining polynomial
\( x^{23} - 5 x^{22} + 3 x^{21} + 3 x^{20} + 43 x^{19} - 6 x^{18} - 31 x^{17} - 56 x^{16} - 68 x^{15} - 89 x^{14} + 147 x^{13} + 180 x^{12} + 274 x^{11} + 240 x^{10} - 211 x^{9} - 521 x^{8} - 383 x^{7} - 275 x^{6} + 291 x^{5} + 249 x^{4} + 358 x^{3} - 9 x^{2} + 107 x + 1 \)
Invariants
| Degree: | $23$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-69781355284066743169711357773860671=-\,1471^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $1471$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{5}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{6}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{7}$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{8} - \frac{2}{9}$, $\frac{1}{9} a^{17} + \frac{1}{9} a^{9} - \frac{2}{9} a$, $\frac{1}{9} a^{18} + \frac{1}{9} a^{10} - \frac{2}{9} a^{2}$, $\frac{1}{189} a^{19} + \frac{5}{189} a^{18} + \frac{1}{27} a^{17} - \frac{10}{189} a^{16} - \frac{10}{63} a^{15} + \frac{1}{21} a^{14} - \frac{1}{63} a^{13} - \frac{5}{189} a^{11} - \frac{22}{189} a^{10} - \frac{8}{189} a^{9} - \frac{1}{189} a^{8} + \frac{1}{9} a^{7} - \frac{1}{3} a^{6} + \frac{4}{9} a^{5} + \frac{2}{7} a^{4} + \frac{31}{189} a^{3} - \frac{55}{189} a^{2} - \frac{89}{189} a - \frac{34}{189}$, $\frac{1}{189} a^{20} + \frac{1}{63} a^{18} - \frac{1}{63} a^{17} - \frac{1}{189} a^{16} - \frac{10}{63} a^{15} + \frac{5}{63} a^{14} + \frac{5}{63} a^{13} - \frac{5}{189} a^{12} + \frac{1}{63} a^{11} - \frac{1}{63} a^{10} + \frac{2}{21} a^{9} + \frac{5}{189} a^{8} + \frac{1}{9} a^{7} - \frac{2}{9} a^{6} + \frac{4}{63} a^{5} - \frac{50}{189} a^{4} - \frac{1}{9} a^{3} + \frac{3}{7} a^{2} + \frac{4}{63} a + \frac{23}{189}$, $\frac{1}{334341} a^{21} - \frac{28}{15921} a^{20} + \frac{187}{334341} a^{19} + \frac{566}{47763} a^{18} + \frac{5378}{111447} a^{17} + \frac{9659}{334341} a^{16} + \frac{9946}{111447} a^{15} + \frac{3455}{111447} a^{14} + \frac{40393}{334341} a^{13} - \frac{5273}{37149} a^{12} + \frac{35680}{334341} a^{11} + \frac{10859}{334341} a^{10} - \frac{5662}{111447} a^{9} + \frac{46898}{334341} a^{8} - \frac{3184}{15921} a^{7} + \frac{54226}{111447} a^{6} - \frac{101900}{334341} a^{5} - \frac{26480}{111447} a^{4} - \frac{71831}{334341} a^{3} + \frac{8819}{47763} a^{2} - \frac{9133}{111447} a + \frac{55736}{334341}$, $\frac{1}{1051883319011665959} a^{22} - \frac{1239853753063}{1051883319011665959} a^{21} + \frac{2451181648289930}{1051883319011665959} a^{20} - \frac{1209540197155618}{1051883319011665959} a^{19} + \frac{15408652922852275}{350627773003888653} a^{18} - \frac{440673393684886}{50089681857698379} a^{17} - \frac{11192360177618827}{1051883319011665959} a^{16} + \frac{6601563789704666}{50089681857698379} a^{15} + \frac{59460982130351080}{1051883319011665959} a^{14} - \frac{35367411024375286}{1051883319011665959} a^{13} - \frac{135837130896276700}{1051883319011665959} a^{12} - \frac{134903839943941}{1051883319011665959} a^{11} - \frac{41801438996131145}{350627773003888653} a^{10} + \frac{2272241741346898}{38958641444876517} a^{9} - \frac{94565496507127852}{1051883319011665959} a^{8} - \frac{130675170973421021}{350627773003888653} a^{7} + \frac{38557081525522837}{80914101462435843} a^{6} - \frac{383413186335015436}{1051883319011665959} a^{5} - \frac{458992933261208761}{1051883319011665959} a^{4} - \frac{43280301324506905}{1051883319011665959} a^{3} + \frac{138468885933215323}{350627773003888653} a^{2} - \frac{81957629112798380}{350627773003888653} a - \frac{473502647293008379}{1051883319011665959}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 492297100.302 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 46 |
| The 13 conjugacy class representatives for $D_{23}$ |
| Character table for $D_{23}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $23$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | $23$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | $23$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | $23$ | $23$ | $23$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | $23$ | $23$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | $23$ | $23$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 1471 | Data not computed | ||||||