Normalized defining polynomial
\( x^{23} - 3 x^{22} + 7 x^{21} - 8 x^{20} - 11 x^{19} + 19 x^{18} + 160 x^{17} + 291 x^{16} + 464 x^{15} - 35 x^{14} - 648 x^{13} - 1313 x^{12} - 1101 x^{11} - 240 x^{10} + 1477 x^{9} + 1043 x^{8} + 863 x^{7} - 10 x^{6} - 264 x^{5} - 712 x^{4} - 80 x^{3} - 2304 x^{2} - 2048 x - 1024 \)
Invariants
| Degree: | $23$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-687231335140465279781021461534970411=-\,1811^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $1811$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{4}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{5} + \frac{1}{8} a^{4} - \frac{3}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{9} - \frac{1}{8} a^{6} + \frac{1}{8} a^{3}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{10} - \frac{1}{8} a^{7} + \frac{1}{8} a^{4}$, $\frac{1}{32} a^{14} + \frac{1}{32} a^{12} - \frac{3}{32} a^{10} - \frac{1}{32} a^{8} + \frac{1}{8} a^{7} - \frac{1}{32} a^{6} - \frac{1}{8} a^{5} + \frac{3}{32} a^{4} + \frac{3}{8} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a$, $\frac{1}{32} a^{15} + \frac{1}{32} a^{13} + \frac{1}{32} a^{11} - \frac{1}{8} a^{10} + \frac{3}{32} a^{9} - \frac{1}{8} a^{8} - \frac{1}{32} a^{7} - \frac{1}{8} a^{6} - \frac{1}{32} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{32} a^{16} + \frac{1}{16} a^{10} - \frac{1}{4} a^{7} - \frac{3}{32} a^{4} + \frac{1}{4} a$, $\frac{1}{64} a^{17} - \frac{1}{64} a^{16} - \frac{1}{64} a^{14} - \frac{1}{16} a^{13} + \frac{3}{64} a^{12} + \frac{1}{32} a^{11} + \frac{5}{64} a^{10} - \frac{1}{16} a^{9} - \frac{7}{64} a^{8} + \frac{1}{8} a^{7} + \frac{13}{64} a^{6} + \frac{1}{64} a^{5} + \frac{3}{16} a^{4} + \frac{1}{8} a^{3} + \frac{3}{8} a^{2}$, $\frac{1}{64} a^{18} - \frac{1}{64} a^{16} - \frac{1}{64} a^{15} - \frac{1}{64} a^{14} - \frac{1}{64} a^{13} + \frac{1}{64} a^{12} - \frac{1}{64} a^{11} - \frac{3}{64} a^{10} + \frac{5}{64} a^{9} - \frac{3}{64} a^{8} + \frac{5}{64} a^{7} - \frac{7}{32} a^{6} + \frac{5}{64} a^{5} - \frac{1}{8} a^{4} - \frac{1}{8} a^{2}$, $\frac{1}{64} a^{19} - \frac{1}{64} a^{15} - \frac{3}{64} a^{13} - \frac{1}{16} a^{12} - \frac{1}{64} a^{11} - \frac{1}{8} a^{10} + \frac{1}{64} a^{9} - \frac{1}{16} a^{8} - \frac{7}{32} a^{7} - \frac{1}{8} a^{6} - \frac{15}{64} a^{5} - \frac{1}{16} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2}$, $\frac{1}{9472} a^{20} - \frac{9}{2368} a^{19} - \frac{7}{4736} a^{18} - \frac{15}{4736} a^{17} - \frac{55}{9472} a^{16} + \frac{7}{1184} a^{15} + \frac{63}{9472} a^{14} - \frac{45}{2368} a^{13} - \frac{155}{9472} a^{12} - \frac{89}{2368} a^{11} - \frac{233}{9472} a^{10} + \frac{99}{2368} a^{9} + \frac{31}{296} a^{8} + \frac{561}{2368} a^{7} - \frac{455}{9472} a^{6} + \frac{215}{4736} a^{5} + \frac{59}{592} a^{4} - \frac{43}{1184} a^{3} + \frac{59}{592} a^{2} - \frac{1}{74} a + \frac{17}{37}$, $\frac{1}{20336384} a^{21} - \frac{73}{10168192} a^{20} + \frac{1825}{10168192} a^{19} + \frac{20291}{10168192} a^{18} + \frac{35953}{20336384} a^{17} + \frac{118271}{10168192} a^{16} - \frac{22969}{20336384} a^{15} + \frac{85615}{10168192} a^{14} + \frac{460981}{20336384} a^{13} - \frac{46043}{10168192} a^{12} + \frac{1179119}{20336384} a^{11} - \frac{140389}{10168192} a^{10} + \frac{23369}{1271024} a^{9} - \frac{42805}{635512} a^{8} - \frac{3774431}{20336384} a^{7} + \frac{45143}{5084096} a^{6} - \frac{345769}{2542048} a^{5} + \frac{409591}{2542048} a^{4} - \frac{50165}{158878} a^{3} - \frac{37089}{317756} a^{2} + \frac{77437}{158878} a - \frac{25291}{79439}$, $\frac{1}{65253369840641792} a^{22} - \frac{662247085}{32626684920320896} a^{21} + \frac{5254425991}{65253369840641792} a^{20} + \frac{80590708193227}{32626684920320896} a^{19} - \frac{337215451394729}{65253369840641792} a^{18} - \frac{15399511548717}{4078335615040112} a^{17} - \frac{1460924573869}{2039167807520056} a^{16} + \frac{79807531365811}{32626684920320896} a^{15} + \frac{239445416608027}{16313342460160448} a^{14} + \frac{48549884800853}{1717193943174784} a^{13} + \frac{703781746693539}{16313342460160448} a^{12} - \frac{1543103511103687}{32626684920320896} a^{11} + \frac{20440656984429}{3434387886349568} a^{10} - \frac{52985264500669}{858596971587392} a^{9} - \frac{5853528238691323}{65253369840641792} a^{8} + \frac{2241989413909625}{16313342460160448} a^{7} + \frac{8770234168596357}{65253369840641792} a^{6} - \frac{1059255468919173}{32626684920320896} a^{5} + \frac{672725219643027}{4078335615040112} a^{4} + \frac{819727256289789}{8156671230080224} a^{3} - \frac{1835233526121381}{4078335615040112} a^{2} - \frac{176876261463597}{509791951880014} a - \frac{52392084205566}{254895975940007}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9293967260.34 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 46 |
| The 13 conjugacy class representatives for $D_{23}$ |
| Character table for $D_{23}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }$ | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | $23$ | $23$ | $23$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | $23$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | $23$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 1811 | Data not computed | ||||||