Normalized defining polynomial
\( x^{23} - 2 x^{22} + 16 x^{21} - 34 x^{20} + 68 x^{19} - 63 x^{18} + 17 x^{17} + 43 x^{16} - 139 x^{15} + 165 x^{14} + 25 x^{13} - 228 x^{12} + 265 x^{11} - 270 x^{10} + 75 x^{9} + 246 x^{8} - 130 x^{7} - 161 x^{6} + 240 x^{5} - 393 x^{4} + 569 x^{3} - 385 x^{2} + 99 x + 1 \)
Invariants
| Degree: | $23$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-58230945563524325903440619509366903=-\,1447^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $1447$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{8} - \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{5}$, $\frac{1}{9} a^{14} - \frac{1}{9} a^{13} + \frac{1}{9} a^{11} - \frac{1}{9} a^{10} + \frac{1}{9} a^{8} - \frac{1}{9} a^{7} - \frac{2}{9} a^{6} - \frac{1}{9} a^{4} - \frac{2}{9} a^{3} - \frac{1}{9} a - \frac{2}{9}$, $\frac{1}{27} a^{15} - \frac{1}{27} a^{13} + \frac{4}{27} a^{12} - \frac{1}{9} a^{11} - \frac{4}{27} a^{10} + \frac{1}{27} a^{9} + \frac{1}{9} a^{8} + \frac{10}{27} a^{6} - \frac{7}{27} a^{5} - \frac{4}{9} a^{4} + \frac{4}{27} a^{3} + \frac{5}{27} a^{2} + \frac{1}{3} a - \frac{2}{27}$, $\frac{1}{27} a^{16} - \frac{1}{27} a^{14} + \frac{4}{27} a^{13} - \frac{1}{9} a^{12} - \frac{4}{27} a^{11} + \frac{1}{27} a^{10} + \frac{1}{9} a^{9} + \frac{1}{27} a^{7} + \frac{11}{27} a^{6} + \frac{2}{9} a^{5} - \frac{5}{27} a^{4} - \frac{4}{27} a^{3} - \frac{11}{27} a - \frac{1}{3}$, $\frac{1}{27} a^{17} + \frac{1}{27} a^{14} - \frac{1}{27} a^{13} + \frac{4}{27} a^{11} + \frac{2}{27} a^{10} + \frac{1}{27} a^{9} + \frac{1}{27} a^{8} - \frac{4}{27} a^{7} + \frac{4}{27} a^{6} - \frac{1}{9} a^{5} - \frac{4}{27} a^{4} + \frac{10}{27} a^{3} + \frac{1}{9} a^{2} + \frac{4}{9} a + \frac{13}{27}$, $\frac{1}{135} a^{18} - \frac{2}{135} a^{17} + \frac{1}{135} a^{15} - \frac{19}{135} a^{13} + \frac{13}{135} a^{12} + \frac{1}{9} a^{11} + \frac{4}{45} a^{10} + \frac{17}{135} a^{9} - \frac{4}{45} a^{8} + \frac{1}{15} a^{7} + \frac{64}{135} a^{6} - \frac{7}{135} a^{5} - \frac{7}{45} a^{4} + \frac{8}{27} a^{3} - \frac{13}{45} a^{2} + \frac{49}{135} a + \frac{4}{135}$, $\frac{1}{135} a^{19} + \frac{1}{135} a^{17} + \frac{1}{135} a^{16} + \frac{2}{135} a^{15} + \frac{1}{135} a^{14} - \frac{4}{135} a^{12} - \frac{13}{135} a^{11} - \frac{1}{15} a^{10} - \frac{2}{15} a^{9} + \frac{1}{27} a^{8} + \frac{2}{135} a^{7} + \frac{22}{45} a^{6} - \frac{1}{27} a^{5} - \frac{37}{135} a^{4} - \frac{29}{135} a^{3} - \frac{14}{135} a^{2} + \frac{4}{45} a - \frac{2}{135}$, $\frac{1}{405} a^{20} - \frac{1}{405} a^{19} - \frac{1}{135} a^{17} + \frac{1}{405} a^{16} - \frac{2}{405} a^{15} - \frac{7}{135} a^{14} - \frac{11}{81} a^{13} - \frac{67}{405} a^{12} - \frac{1}{405} a^{11} - \frac{16}{405} a^{10} - \frac{44}{405} a^{9} + \frac{34}{405} a^{8} + \frac{1}{9} a^{7} + \frac{20}{81} a^{6} + \frac{7}{81} a^{5} + \frac{199}{405} a^{4} + \frac{1}{81} a^{2} + \frac{1}{15} a + \frac{8}{405}$, $\frac{1}{2025} a^{21} + \frac{2}{2025} a^{19} - \frac{1}{405} a^{17} + \frac{17}{2025} a^{16} - \frac{14}{2025} a^{15} + \frac{92}{2025} a^{14} + \frac{241}{2025} a^{13} - \frac{86}{2025} a^{12} + \frac{244}{2025} a^{11} - \frac{8}{75} a^{10} + \frac{32}{2025} a^{9} + \frac{103}{2025} a^{8} + \frac{13}{2025} a^{7} - \frac{32}{135} a^{6} + \frac{62}{225} a^{5} - \frac{46}{405} a^{4} - \frac{112}{2025} a^{3} - \frac{937}{2025} a^{2} - \frac{127}{2025} a - \frac{346}{2025}$, $\frac{1}{104470934408325} a^{22} - \frac{914858467}{6964728960555} a^{21} - \frac{32762334668}{104470934408325} a^{20} - \frac{56589028498}{20894186881665} a^{19} - \frac{32608635196}{20894186881665} a^{18} + \frac{298230323552}{104470934408325} a^{17} - \frac{175588356248}{34823644802775} a^{16} - \frac{965948654048}{104470934408325} a^{15} + \frac{50294744476}{104470934408325} a^{14} + \frac{8343057920609}{104470934408325} a^{13} - \frac{15682282111}{104470934408325} a^{12} + \frac{1391427574309}{104470934408325} a^{11} - \frac{401488707002}{11607881600925} a^{10} - \frac{737935559353}{11607881600925} a^{9} + \frac{5414916967156}{34823644802775} a^{8} - \frac{150434843501}{2321576320185} a^{7} - \frac{13838276284492}{104470934408325} a^{6} + \frac{3788513561851}{20894186881665} a^{5} + \frac{38665881240733}{104470934408325} a^{4} - \frac{1968498721702}{104470934408325} a^{3} + \frac{7920828501611}{34823644802775} a^{2} - \frac{8471973936001}{104470934408325} a + \frac{6111746943359}{20894186881665}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 530761705.173 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 46 |
| The 13 conjugacy class representatives for $D_{23}$ |
| Character table for $D_{23}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $23$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | $23$ | $23$ | $23$ | $23$ | $23$ | $23$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | $23$ | $23$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | $23$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | $23$ | $23$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 1447 | Data not computed | ||||||