Normalized defining polynomial
\( x^{23} + 5 x^{21} - 17 x^{20} + 33 x^{19} - 14 x^{18} + 53 x^{17} - 34 x^{16} - 19 x^{15} + 140 x^{14} - 19 x^{13} + 257 x^{12} - 106 x^{11} - 16 x^{10} + 274 x^{9} + 165 x^{8} + 515 x^{7} - 28 x^{6} + 129 x^{5} + 89 x^{4} + 524 x^{3} + 244 x^{2} + 50 x - 1 \)
Invariants
| Degree: | $23$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2939886993377131174870795633320047=-\,1103^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $1103$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{5} a^{17} - \frac{1}{5} a^{16} - \frac{2}{5} a^{15} + \frac{1}{5} a^{14} - \frac{2}{5} a^{12} - \frac{2}{5} a^{11} + \frac{1}{5} a^{10} - \frac{1}{5} a^{9} - \frac{2}{5} a^{8} + \frac{2}{5} a^{7} - \frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{1}{5} a^{4} + \frac{1}{5} a^{3} + \frac{2}{5} a^{2} - \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{18} + \frac{2}{5} a^{16} - \frac{1}{5} a^{15} + \frac{1}{5} a^{14} - \frac{2}{5} a^{13} + \frac{1}{5} a^{12} - \frac{1}{5} a^{11} + \frac{2}{5} a^{9} + \frac{1}{5} a^{7} + \frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{2}{5} a^{4} - \frac{2}{5} a^{3} + \frac{1}{5} a^{2} + \frac{1}{5}$, $\frac{1}{35} a^{19} - \frac{3}{35} a^{18} + \frac{3}{35} a^{17} + \frac{1}{5} a^{16} - \frac{3}{35} a^{15} + \frac{11}{35} a^{14} + \frac{2}{35} a^{13} + \frac{2}{5} a^{12} - \frac{4}{35} a^{11} - \frac{1}{5} a^{10} - \frac{2}{35} a^{9} + \frac{4}{35} a^{8} - \frac{11}{35} a^{6} + \frac{1}{7} a^{5} - \frac{1}{5} a^{4} - \frac{2}{35} a^{3} + \frac{4}{35} a^{2} + \frac{1}{7} a - \frac{12}{35}$, $\frac{1}{665} a^{20} + \frac{3}{665} a^{19} - \frac{64}{665} a^{18} + \frac{18}{665} a^{17} - \frac{17}{665} a^{16} + \frac{43}{95} a^{15} + \frac{187}{665} a^{14} - \frac{331}{665} a^{13} + \frac{58}{133} a^{12} + \frac{137}{665} a^{11} + \frac{1}{35} a^{10} - \frac{239}{665} a^{9} + \frac{318}{665} a^{8} + \frac{276}{665} a^{7} + \frac{107}{665} a^{6} - \frac{243}{665} a^{5} + \frac{306}{665} a^{4} + \frac{258}{665} a^{3} - \frac{69}{665} a^{2} + \frac{12}{133} a + \frac{327}{665}$, $\frac{1}{23275} a^{21} + \frac{16}{23275} a^{20} - \frac{9}{3325} a^{19} + \frac{223}{3325} a^{18} - \frac{1759}{23275} a^{17} - \frac{452}{23275} a^{16} + \frac{48}{475} a^{15} + \frac{10061}{23275} a^{14} - \frac{10606}{23275} a^{13} - \frac{123}{4655} a^{12} + \frac{243}{931} a^{11} + \frac{8387}{23275} a^{10} - \frac{3644}{23275} a^{9} + \frac{6652}{23275} a^{8} - \frac{428}{23275} a^{7} + \frac{3694}{23275} a^{6} - \frac{3309}{23275} a^{5} - \frac{10793}{23275} a^{4} - \frac{363}{23275} a^{3} - \frac{5777}{23275} a^{2} - \frac{363}{3325} a - \frac{6199}{23275}$, $\frac{1}{3046699326689712481981375} a^{22} + \frac{25545655080006449148}{3046699326689712481981375} a^{21} + \frac{558005921733602553434}{3046699326689712481981375} a^{20} - \frac{9492408196367534356}{87048552191134642342325} a^{19} + \frac{252297766175310222540003}{3046699326689712481981375} a^{18} + \frac{13734561780472451840416}{609339865337942496396275} a^{17} + \frac{772252659968996159057218}{3046699326689712481981375} a^{16} - \frac{216995991261639503573164}{609339865337942496396275} a^{15} + \frac{324250576836940569126596}{3046699326689712481981375} a^{14} + \frac{265544620378028153801798}{3046699326689712481981375} a^{13} - \frac{32994940674651568428033}{609339865337942496396275} a^{12} - \frac{126669458345333881495338}{3046699326689712481981375} a^{11} - \frac{242586588547565610238551}{609339865337942496396275} a^{10} + \frac{316660290499975402807894}{3046699326689712481981375} a^{9} + \frac{853555952935271714185111}{3046699326689712481981375} a^{8} + \frac{1176735610661458585105118}{3046699326689712481981375} a^{7} + \frac{25529038672061223186983}{234361486668439421690875} a^{6} + \frac{154569711627625588223627}{435242760955673211711625} a^{5} - \frac{381941050928700821861474}{3046699326689712481981375} a^{4} - \frac{221239360814385883978063}{3046699326689712481981375} a^{3} + \frac{28477222848814287047257}{121867973067588499279255} a^{2} + \frac{1166011909557886455496869}{3046699326689712481981375} a + \frac{737938038390418032622912}{3046699326689712481981375}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 42306743.1121 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 46 |
| The 13 conjugacy class representatives for $D_{23}$ |
| Character table for $D_{23}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $23$ | $23$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | $23$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | $23$ | $23$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | $23$ | $23$ | $23$ | $23$ | $23$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 1103 | Data not computed | ||||||