Normalized defining polynomial
\( x^{23} - 11 x^{22} + 47 x^{21} - 78 x^{20} - 51 x^{19} + 367 x^{18} - 359 x^{17} - 364 x^{16} + 1182 x^{15} - 712 x^{14} - 1586 x^{13} + 3310 x^{12} - 393 x^{11} - 5271 x^{10} + 5059 x^{9} + 3246 x^{8} - 8091 x^{7} - 125 x^{6} + 10047 x^{5} - 6818 x^{4} - 2608 x^{3} + 2872 x^{2} + 1488 x - 2176 \)
Invariants
| Degree: | $23$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 11]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1823491470737247969166873376199879779=-\,1979^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $1979$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{5}$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{9} - \frac{1}{8} a^{6} + \frac{1}{8} a^{3}$, $\frac{1}{16} a^{13} - \frac{1}{8} a^{11} - \frac{1}{16} a^{10} - \frac{1}{8} a^{9} + \frac{3}{16} a^{7} + \frac{1}{8} a^{5} - \frac{3}{16} a^{4} - \frac{3}{8} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{16} a^{14} - \frac{1}{16} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{16} a^{8} - \frac{3}{16} a^{5} + \frac{1}{8} a^{4} - \frac{3}{8} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{15} - \frac{1}{16} a^{12} - \frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{16} a^{9} - \frac{3}{16} a^{6} + \frac{1}{8} a^{5} + \frac{1}{8} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{16} + \frac{1}{16} a^{10} - \frac{1}{4} a^{7} - \frac{3}{32} a^{4} + \frac{1}{4} a$, $\frac{1}{32} a^{17} + \frac{1}{16} a^{11} - \frac{3}{32} a^{5}$, $\frac{1}{32} a^{18} - \frac{1}{16} a^{12} - \frac{1}{8} a^{9} + \frac{1}{32} a^{6} + \frac{1}{8} a^{3}$, $\frac{1}{32} a^{19} - \frac{1}{8} a^{11} + \frac{1}{16} a^{10} - \frac{1}{8} a^{9} + \frac{7}{32} a^{7} + \frac{1}{8} a^{5} + \frac{3}{16} a^{4} - \frac{3}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{64} a^{20} - \frac{1}{64} a^{17} - \frac{1}{32} a^{14} - \frac{3}{32} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{7}{64} a^{8} - \frac{9}{64} a^{5} + \frac{1}{8} a^{4} - \frac{3}{8} a^{3} + \frac{3}{8} a^{2} - \frac{1}{2} a$, $\frac{1}{2542991104} a^{21} + \frac{15711945}{2542991104} a^{20} - \frac{85999}{5941568} a^{19} + \frac{38623339}{2542991104} a^{18} - \frac{20830419}{2542991104} a^{17} - \frac{2662609}{1271495552} a^{16} - \frac{2711505}{1271495552} a^{15} - \frac{7851203}{1271495552} a^{14} + \frac{9104205}{635747776} a^{13} - \frac{10476871}{1271495552} a^{12} + \frac{127819749}{1271495552} a^{11} + \frac{31162009}{317873888} a^{10} + \frac{225510353}{2542991104} a^{9} - \frac{81803051}{2542991104} a^{8} - \frac{37056}{584327} a^{7} + \frac{53996883}{2542991104} a^{6} + \frac{140776233}{2542991104} a^{5} + \frac{230558005}{1271495552} a^{4} - \frac{15188691}{39734236} a^{3} + \frac{67112569}{317873888} a^{2} + \frac{5690731}{158936944} a + \frac{399831}{1168654}$, $\frac{1}{7223994354800670208} a^{22} - \frac{32236769}{3611997177400335104} a^{21} - \frac{12480890418743055}{7223994354800670208} a^{20} - \frac{3651022161665313}{7223994354800670208} a^{19} + \frac{595055344691565}{106235211100009856} a^{18} - \frac{68544658981136753}{7223994354800670208} a^{17} + \frac{10882727393095497}{1805998588700167552} a^{16} - \frac{1727189414823665}{56437455896880236} a^{15} - \frac{2276908766456481}{97621545335144192} a^{14} + \frac{91510751694803347}{3611997177400335104} a^{13} + \frac{81620667200243501}{1805998588700167552} a^{12} - \frac{28554517181878747}{3611997177400335104} a^{11} + \frac{801576953185247129}{7223994354800670208} a^{10} + \frac{142761448428837765}{3611997177400335104} a^{9} - \frac{392577123916385103}{7223994354800670208} a^{8} + \frac{1800060526878617803}{7223994354800670208} a^{7} - \frac{75699252916715915}{902999294350083776} a^{6} + \frac{1349702774902286231}{7223994354800670208} a^{5} + \frac{849920503594320641}{3611997177400335104} a^{4} - \frac{72441255508022767}{902999294350083776} a^{3} - \frac{100456501116197669}{902999294350083776} a^{2} + \frac{88677540986601359}{451499647175041888} a + \frac{628475915758957}{3319850346875308}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15406380217.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 46 |
| The 13 conjugacy class representatives for $D_{23}$ |
| Character table for $D_{23}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }$ | $23$ | $23$ | $23$ | $23$ | $23$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | $23$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | $23$ | $23$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | $23$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | $23$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 1979 | Data not computed | ||||||