Properties

Label 23.1.10195541015...6875.1
Degree $23$
Signature $[1, 11]$
Discriminant $-\,5^{11}\cdot 23^{23}$
Root discriminant $49.66$
Ramified primes $5, 23$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $F_{23}$ (as 23T4)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 23, 0, 506, 0, 3289, 0, 9867, 0, 16445, 0, 16744, 0, 10948, 0, 4692, 0, 1311, 0, 230, 0, 23, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^23 + 23*x^21 + 230*x^19 + 1311*x^17 + 4692*x^15 + 10948*x^13 + 16744*x^11 + 16445*x^9 + 9867*x^7 + 3289*x^5 + 506*x^3 + 23*x - 1)
 
gp: K = bnfinit(x^23 + 23*x^21 + 230*x^19 + 1311*x^17 + 4692*x^15 + 10948*x^13 + 16744*x^11 + 16445*x^9 + 9867*x^7 + 3289*x^5 + 506*x^3 + 23*x - 1, 1)
 

Normalized defining polynomial

\( x^{23} + 23 x^{21} + 230 x^{19} + 1311 x^{17} + 4692 x^{15} + 10948 x^{13} + 16744 x^{11} + 16445 x^{9} + 9867 x^{7} + 3289 x^{5} + 506 x^{3} + 23 x - 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $23$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[1, 11]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-1019554101555073829802491841336279296875=-\,5^{11}\cdot 23^{23}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $49.66$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 53144954646.2 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$F_{23}$ (as 23T4):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 506
The 23 conjugacy class representatives for $F_{23}$
Character table for $F_{23}$ is not computed

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.

Sibling fields

Degree 46 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $22{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }$ $22{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ R ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ $22{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ $22{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ $22{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ R ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ ${\href{/LocalNumberField/37.11.0.1}{11} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{11}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
5Data not computed
23Data not computed