Normalized defining polynomial
\( x^{22} - 4 x^{21} - 7 x^{20} + 51 x^{19} - 43 x^{18} - 150 x^{17} + 416 x^{16} - 192 x^{15} - 1256 x^{14} + 1988 x^{13} + 2076 x^{12} - 5521 x^{11} - 1238 x^{10} + 8241 x^{9} - 2466 x^{8} - 6627 x^{7} + 5601 x^{6} + 2988 x^{5} - 5397 x^{4} + 566 x^{3} + 3417 x^{2} - 2306 x - 1609 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-87192729322616328324934343477207=-\,23^{21}\cdot 47^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{9160107466819862889071832243929911757} a^{21} + \frac{3664008150098448215631768739168918850}{9160107466819862889071832243929911757} a^{20} - \frac{3582301361320250355590339611355259589}{9160107466819862889071832243929911757} a^{19} + \frac{2023718677164715085494244778757891668}{9160107466819862889071832243929911757} a^{18} + \frac{1534884563347806417219499991512792688}{9160107466819862889071832243929911757} a^{17} + \frac{942665840229694079491578989612983804}{9160107466819862889071832243929911757} a^{16} - \frac{3378268854923134002746198218230658734}{9160107466819862889071832243929911757} a^{15} - \frac{2973604452988914944286776223461428678}{9160107466819862889071832243929911757} a^{14} - \frac{3876194226951138216103563655187462845}{9160107466819862889071832243929911757} a^{13} - \frac{3218478721244046773541320310639721839}{9160107466819862889071832243929911757} a^{12} + \frac{716901043532152835281272659572093592}{9160107466819862889071832243929911757} a^{11} - \frac{2296428946984123270849876002984672378}{9160107466819862889071832243929911757} a^{10} + \frac{94106263810151992834674465259230223}{9160107466819862889071832243929911757} a^{9} + \frac{2480906080244639714646810456417715587}{9160107466819862889071832243929911757} a^{8} + \frac{3250763562234657701696300000970154045}{9160107466819862889071832243929911757} a^{7} + \frac{3438852153302451219637416118365001776}{9160107466819862889071832243929911757} a^{6} - \frac{3063050164247612935749249435496043117}{9160107466819862889071832243929911757} a^{5} - \frac{370144812152687422931369801965708}{194895903549358784873868771147444931} a^{4} + \frac{439708455038813498128935947041691662}{9160107466819862889071832243929911757} a^{3} + \frac{1485937687741755247097847144223758527}{9160107466819862889071832243929911757} a^{2} + \frac{3818927114644332474119195872799104917}{9160107466819862889071832243929911757} a + \frac{380562140158201692247262424300599491}{9160107466819862889071832243929911757}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 27806400.2764 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 208 conjugacy class representatives for t22n28 are not computed |
| Character table for t22n28 is not computed |
Intermediate fields
| \(\Q(\zeta_{23})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | $22$ | $22$ | $22$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | $22$ | $22$ | R | ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ | $22$ | R | $22$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 23 | Data not computed | ||||||
| 47 | Data not computed | ||||||