Normalized defining polynomial
\( x^{22} - x^{21} + x^{20} - x^{19} - 22 x^{18} + 22 x^{17} - 91 x^{16} + 68 x^{15} - 229 x^{14} - 162 x^{13} + 484 x^{12} - 1105 x^{11} + 852 x^{10} - 461 x^{9} - 114 x^{8} + 1264 x^{7} - 735 x^{6} + 574 x^{5} + 622 x^{4} + 298 x^{3} - 459 x^{2} - 162 x + 47 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-87192729322616328324934343477207=-\,23^{21}\cdot 47^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{47} a^{20} + \frac{18}{47} a^{19} + \frac{7}{47} a^{18} + \frac{6}{47} a^{17} - \frac{4}{47} a^{16} - \frac{2}{47} a^{15} - \frac{7}{47} a^{14} - \frac{4}{47} a^{13} - \frac{21}{47} a^{12} - \frac{16}{47} a^{11} - \frac{2}{47} a^{10} + \frac{3}{47} a^{9} - \frac{17}{47} a^{8} - \frac{6}{47} a^{7} - \frac{15}{47} a^{6} - \frac{13}{47} a^{5} + \frac{16}{47} a^{4} - \frac{18}{47} a^{3} - \frac{20}{47} a^{2} - \frac{3}{47} a$, $\frac{1}{12132506454156656784356113315074242197} a^{21} + \frac{32769940805618568363253395671867840}{12132506454156656784356113315074242197} a^{20} - \frac{5681791058205206174779540935529938906}{12132506454156656784356113315074242197} a^{19} + \frac{187148943072113096564843600450548275}{12132506454156656784356113315074242197} a^{18} + \frac{832500375242768051043162203050034418}{12132506454156656784356113315074242197} a^{17} - \frac{208367858976908438306832848378772521}{12132506454156656784356113315074242197} a^{16} + \frac{1376152239318889066019403573551626149}{12132506454156656784356113315074242197} a^{15} - \frac{129640996962688199066469302857772948}{12132506454156656784356113315074242197} a^{14} - \frac{3005110957896931754155009410914077218}{12132506454156656784356113315074242197} a^{13} + \frac{1809602737864766259751931499618313688}{12132506454156656784356113315074242197} a^{12} + \frac{3473172837782126519082997771995767800}{12132506454156656784356113315074242197} a^{11} + \frac{2711311500912408751692187063274373888}{12132506454156656784356113315074242197} a^{10} + \frac{1482154432882620009610487588496205271}{12132506454156656784356113315074242197} a^{9} - \frac{3629226468923651309840522730254863898}{12132506454156656784356113315074242197} a^{8} + \frac{758414639519510287874362450394300114}{12132506454156656784356113315074242197} a^{7} + \frac{5901809273156786828734097684205710452}{12132506454156656784356113315074242197} a^{6} - \frac{3694503999847689261632061203874593106}{12132506454156656784356113315074242197} a^{5} - \frac{2578231753603067630177996209373771436}{12132506454156656784356113315074242197} a^{4} - \frac{2854835307322961172919241892431894449}{12132506454156656784356113315074242197} a^{3} - \frac{1806582931603760570180596986848174422}{12132506454156656784356113315074242197} a^{2} + \frac{5747086747439894624586704066644826609}{12132506454156656784356113315074242197} a - \frac{124499499546300753816350597359122297}{258138435194822484773534325852643451}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 28009585.914 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 208 conjugacy class representatives for t22n28 are not computed |
| Character table for t22n28 is not computed |
Intermediate fields
| \(\Q(\zeta_{23})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | $22$ | $22$ | $22$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | $22$ | $22$ | R | ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ | $22$ | R | $22$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 23 | Data not computed | ||||||
| 47 | Data not computed | ||||||