Properties

Label 22.8.58418948490...2320.1
Degree $22$
Signature $[8, 7]$
Discriminant $-\,2^{71}\cdot 3^{21}\cdot 5\cdot 337^{8}\cdot 1543\cdot 310501^{8}\cdot 21330377$
Root discriminant $71{,}289.43$
Ramified primes $2, 3, 5, 337, 1543, 310501, 21330377$
Class number Not computed
Class group Not computed
Galois group 22T44

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![35545793447880, 0, 13681132452239, 0, -2066536069936, 0, -1132846722171, 0, -93270702624, 0, 922756032, 0, 302815992, 0, 5285400, 0, -209496, 0, -4821, 0, 40, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^22 + 40*x^20 - 4821*x^18 - 209496*x^16 + 5285400*x^14 + 302815992*x^12 + 922756032*x^10 - 93270702624*x^8 - 1132846722171*x^6 - 2066536069936*x^4 + 13681132452239*x^2 + 35545793447880)
 
gp: K = bnfinit(x^22 + 40*x^20 - 4821*x^18 - 209496*x^16 + 5285400*x^14 + 302815992*x^12 + 922756032*x^10 - 93270702624*x^8 - 1132846722171*x^6 - 2066536069936*x^4 + 13681132452239*x^2 + 35545793447880, 1)
 

Normalized defining polynomial

\( x^{22} + 40 x^{20} - 4821 x^{18} - 209496 x^{16} + 5285400 x^{14} + 302815992 x^{12} + 922756032 x^{10} - 93270702624 x^{8} - 1132846722171 x^{6} - 2066536069936 x^{4} + 13681132452239 x^{2} + 35545793447880 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $22$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 7]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-58418948490087900856198784513049139500595201522971777317979130633702859321491007685912328702163396402872320=-\,2^{71}\cdot 3^{21}\cdot 5\cdot 337^{8}\cdot 1543\cdot 310501^{8}\cdot 21330377\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $71{,}289.43$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 337, 1543, 310501, 21330377$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{2} a^{17} - \frac{1}{2} a$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{19} - \frac{1}{2} a^{3}$, $\frac{1}{57887320607168480035725746532474501690526662399435613406516} a^{20} - \frac{2950442336895763005424408194123522436283571976756718491245}{57887320607168480035725746532474501690526662399435613406516} a^{18} + \frac{6821522541564658735179692173709612637676064494172081846563}{14471830151792120008931436633118625422631665599858903351629} a^{16} + \frac{5832168576445284563241433903534476907436776464631869840549}{14471830151792120008931436633118625422631665599858903351629} a^{14} + \frac{2016907842336175271833927684427491039808942727709923502565}{14471830151792120008931436633118625422631665599858903351629} a^{12} + \frac{3616447482838561289850993661292656391784625249508377496223}{14471830151792120008931436633118625422631665599858903351629} a^{10} + \frac{6255656531791301601189048680870162671143898472737040777170}{14471830151792120008931436633118625422631665599858903351629} a^{8} + \frac{3372674489032727054476127874717180164365285067760898039858}{14471830151792120008931436633118625422631665599858903351629} a^{6} + \frac{8444471643867987534224861075922752542722607729758487195345}{57887320607168480035725746532474501690526662399435613406516} a^{4} + \frac{14777777014163413047753720120436553972162792194434447510719}{57887320607168480035725746532474501690526662399435613406516} a^{2} - \frac{107757367164295089434167702904843619129541955094180993672}{14471830151792120008931436633118625422631665599858903351629}$, $\frac{1}{173661961821505440107177239597423505071579987198306840219548} a^{21} + \frac{25993217966688477012438465072113728408979759222961088212013}{173661961821505440107177239597423505071579987198306840219548} a^{19} - \frac{276261689554267512857350761899800049093178870504913219501}{28943660303584240017862873266237250845263331199717806703258} a^{17} + \frac{1944056192148428187747144634511492302478925488210623280183}{14471830151792120008931436633118625422631665599858903351629} a^{15} - \frac{4151640769818648245699169649563711460940907624049659949688}{14471830151792120008931436633118625422631665599858903351629} a^{13} + \frac{1205482494279520429950331220430885463928208416502792498741}{14471830151792120008931436633118625422631665599858903351629} a^{11} + \frac{6909162227861140536706828437996262697925188024198648042933}{14471830151792120008931436633118625422631665599858903351629} a^{9} + \frac{5948168213608282354469188169278601862332316889206600463829}{14471830151792120008931436633118625422631665599858903351629} a^{7} + \frac{22110597417012155856650202536132418077749756709731366867287}{57887320607168480035725746532474501690526662399435613406516} a^{5} - \frac{72053203896589307005834899678275198563627201404718972599055}{173661961821505440107177239597423505071579987198306840219548} a^{3} - \frac{14687344886120710187799772038928312660890749510047265338973}{86830980910752720053588619798711752535789993599153420109774} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Not computed

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $14$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Not computed
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  Not computed
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

22T44:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 16220160
The 104 conjugacy class representatives for t22n44 are not computed
Character table for t22n44 is not computed

Intermediate fields

11.11.118769262421915560193703211428553337469927424.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 22 sibling: data not computed
Degree 44 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R $22$ ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ $16{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
3.9.10.1$x^{9} + 3 x^{2} + 3$$9$$1$$10$$C_3^2:Q_8$$[5/4, 5/4]_{4}^{2}$
3.9.10.1$x^{9} + 3 x^{2} + 3$$9$$1$$10$$C_3^2:Q_8$$[5/4, 5/4]_{4}^{2}$
$5$5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.8.0.1$x^{8} + x^{2} - 2 x + 3$$1$$8$$0$$C_8$$[\ ]^{8}$
5.8.0.1$x^{8} + x^{2} - 2 x + 3$$1$$8$$0$$C_8$$[\ ]^{8}$
337Data not computed
1543Data not computed
310501Data not computed
21330377Data not computed