Normalized defining polynomial
\( x^{22} + 13 x^{20} - 136 x^{18} - 1229 x^{16} + 6421 x^{14} + 15324 x^{12} - 43922 x^{10} - 84593 x^{8} - 33311 x^{6} - 3209 x^{4} + 35 x^{2} + 9 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-4129233136056857981979443884256982828952059904=-\,2^{22}\cdot 74843^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $118.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 74843$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{17} + \frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{18} + \frac{1}{3} a^{10} - \frac{1}{3} a^{8} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{19} + \frac{1}{3} a^{11} - \frac{1}{3} a^{9} - \frac{1}{3} a^{5}$, $\frac{1}{13238096149024683167919} a^{20} + \frac{640573509456373738970}{4412698716341561055973} a^{18} + \frac{447711210963301141147}{13238096149024683167919} a^{16} - \frac{1184366642247045016628}{4412698716341561055973} a^{14} + \frac{4832658935312683939033}{13238096149024683167919} a^{12} - \frac{2199239708882258371327}{13238096149024683167919} a^{10} + \frac{2840599765582413560206}{13238096149024683167919} a^{8} + \frac{6245495063156705106259}{13238096149024683167919} a^{6} - \frac{1569499037965795550448}{4412698716341561055973} a^{4} - \frac{1055288183542084001548}{13238096149024683167919} a^{2} - \frac{1644796817666611182358}{4412698716341561055973}$, $\frac{1}{13238096149024683167919} a^{21} + \frac{640573509456373738970}{4412698716341561055973} a^{19} + \frac{447711210963301141147}{13238096149024683167919} a^{17} + \frac{859598789600426006089}{13238096149024683167919} a^{15} + \frac{4832658935312683939033}{13238096149024683167919} a^{13} - \frac{2199239708882258371327}{13238096149024683167919} a^{11} + \frac{2840599765582413560206}{13238096149024683167919} a^{9} - \frac{2579902369526417005687}{13238096149024683167919} a^{7} + \frac{4116900318785735460602}{13238096149024683167919} a^{5} - \frac{1055288183542084001548}{13238096149024683167919} a^{3} + \frac{3891006979683288564872}{13238096149024683167919} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $14$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1292107867650000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1351680 |
| The 112 conjugacy class representatives for t22n42 are not computed |
| Character table for t22n42 is not computed |
Intermediate fields
| 11.11.31376518243389673201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | $22$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | $22$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | $22$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 74843 | Data not computed | ||||||